The Influence of In Vitro Degradation on the Properties of Polylactic Acid Electrospun Fiber Mats
Highlights
- We found that the mechanical properties and structure of polylactic acid (PLA) fiber mats are significantly altered when exposed to in vitro degradation.
- This study also emphasizes how the morphological characteristics of PLA fiber mats impact their degradation mechanism.
- These changes are important for the use of PLA fiber mats in medical applications, where material performance needs to remain predictable over time.
- Our findings can help improve the design of PLA-based materials, allowing them to be better tailored for specific uses, with controlled degradation rates and properties.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Electrospinning
2.2.2. In Vitro Degradation
2.3. Characterization
2.3.1. Scanning Electron Microscopy Analysis
2.3.2. Fiber Weight Loss
2.3.3. Thermal Characterization
2.3.4. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.5. Mechanical Characterization
3. Results and Discussion
3.1. SEM Analysis
3.2. Weight Loss
3.3. Thermal Properties
3.4. FTIR Analysis
3.5. Mechanical Properties
4. Conclusions
- SEM images showed significant degradation and fiber fracturing after 28 days. The E6 fiber mats lost 27.5% of their weight, while the E10 fibers lost 41%. Differences in diameter contributed to the varying degradation rates between the two fiber types.
- DSC analysis indicated that non-degraded samples had a lower Tg, suggesting solvent trapping and a plasticizing effect. The Tg of PLA electrospun fiber mats initially increased due to hydrolytic degradation and solvent release, then gradually decreased and increased again. The degree of crystallinity continuously decreased, indicating ongoing degradation. FTIR analysis revealed that the E10 fibers degraded more slowly and formed fewer carbonyl groups than the E6 fibers, likely due to their thicker structure and lower surface-area-to-volume ratio.
- Mechanical tests confirmed that both the E6 and E10 fiber mats underwent significant changes during degradation. E6 showed a sharp rise in Young’s modulus followed by a steep decline in yield strength after 7 days, while E10 exhibited more stability with slower degradation, showing a gradual decrease in yield strength and higher strain at break. After 28 days, E6’s modulus increased 3.55 times, while E10’s rose 2.23 times. The E10 fibers were more resistant to degradation, while the E6 fibers degraded faster and showed more significant changes in mechanical properties.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stramarkou, M.; Tzegiannakis, I.; Christoforidi, E.; Krokida, M. Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications. Polymers 2024, 16, 514. [Google Scholar] [CrossRef] [PubMed]
- Dolgin, J.; Hanumantharao, S.N.; Farias, S.; Simon Jr, C.G.; Rao, S. Mechanical properties and morphological alterations in fiber-based scaffolds affecting tissue engineering outcomes. Fibers 2023, 11, 39. [Google Scholar] [CrossRef]
- Ewaldz, E.; Rinehart, J.M.; Miller, M.; Brettmann, B. Processability of Thermoelectric Ultrafine Fibers via Electrospinning for Wearable Electronics. ACS Omega 2023, 8, 30239–30246. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Chen, W.; Zhao, P.; Yang, Y.; Yu, D.-G. Electrospun porous nanofibers: Pore− forming mechanisms and applications for photocatalytic degradation of organic pollutants in wastewater. Polymers 2022, 14, 3990. [Google Scholar] [CrossRef]
- Li, L.; Chen, Z.; Pan, F.; Guo, H.; Wang, X.; Cheng, J.; Cai, L.; Xiu, Z.; Chen, L.; Batalu, D. Electrospinning technology on one dimensional microwave absorbers: Fundamentals, current progress, and perspectives. Chem. Eng. J. 2023, 470, 144236. [Google Scholar] [CrossRef]
- Raza, Z.A.; Naeem, A.R.; Shafi, R.; Abid, S. Chitosan-incorporated poly (hydroxybutyrate) porous electrospun scaffold for potential biomedical applications. Polym. Bull. 2024, 81, 1691–1705. [Google Scholar] [CrossRef]
- CeCe, R.; Jining, L.; Islam, M.; Korvink, J.G.; Sharma, B. An Overview of the Electrospinning of Polymeric Nanofibers for Biomedical Applications Related to Drug Delivery. Adv. Eng. Mater. 2024, 26, 2301297. [Google Scholar] [CrossRef]
- Mtibe, A.; Muniyasamy, S.; Mokhena, T.C.; Ofosu, O.; Ojijo, V.; John, M. Recent insight into the biomedical applications of polybutylene succinate and polybutylene succinate-based materials. Express Polym. Lett. 2023, 17, 2–28. [Google Scholar] [CrossRef]
- Farhaj, S.; Conway, B.R.; Ghori, M.U. Nanofibres in drug delivery applications. Fibers 2023, 11, 21. [Google Scholar] [CrossRef]
- Arroyo-Reyes, B.L.; Gómez-Muñoz, C.L.; Zaca-Morán, P.; Galindo-Ramírez, F.; Morales-Sánchez, M.A. Fabrication of a PLA/PVA-BIO-HA Polymeric Membrane by the Electrospinning Technique. Fibers 2024, 12, 33. [Google Scholar] [CrossRef]
- Kesici Güler, H.; Cengiz Callioglu, F. A new composite nanofibrous biomaterial development for drug delivery applications. Express Polym. Lett. 2023, 17, 487–501. [Google Scholar] [CrossRef]
- Sell, S.A.; McClure, M.J.; Garg, K.; Wolfe, P.S.; Bowlin, G.L. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 2009, 61, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Pina, S.; Oliveira, J.M.; Reis, R.L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv. Mater. 2015, 27, 1143–1169. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Bhatia, S. Natural polymers vs synthetic polymer. In Natural Polymer Drug Delivery Systems; Springer: Cham, Switzerland, 2016; pp. 95–118. [Google Scholar] [CrossRef]
- Molnar, K.; Voniatis, C.; Feher, D.; Szabo, G.; Varga, R.; Reiniger, L.; Juriga, D.; Kiss, Z.; Krisch, E.; Weber, G.; et al. Poly(amino acid) based fibrous membranes with tuneable in vivo biodegradation. PLoS ONE 2021, 16, e0254843. [Google Scholar] [CrossRef]
- Ray, S.S.; Bousmina, M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 2005, 50, 962–1079. [Google Scholar] [CrossRef]
- Gomez-Caturla, J.; Montanes, N.; Quiles-Carrillo, L.; Balart, R.; Garcia-Garcia, D.; Dominici, F.; Torre, L. Development of biodegradable PLA composites and tangerine peel flour with improved toughness containing a natural-based terpenoid. Express Polym. Lett. 2023, 17, 789–805. [Google Scholar] [CrossRef]
- McClain, A.; Jindal, A.; Durr, H.; Puskas, J.E.; Leipzig, N.D. In Vivo Release of Zafirlukast from Electrospun Polyisobutylene-Based Fiber Mats to Reduce Capsular Contracture of Silicone Breast Prostheses. ACS Appl. Bio Mater. 2024, 7, 4442–4453. [Google Scholar] [CrossRef]
- Biswas, M.C.; Jony, B.; Nandy, P.K.; Chowdhury, R.A.; Halder, S.; Kumar, D.; Ramakrishna, S.; Hassan, M.; Ahsan, M.A.; Hoque, M.E.; et al. Recent Advancement of Biopolymers and Their Potential Biomedical Applications. J. Polym. Environ. 2022, 30, 51–74. [Google Scholar] [CrossRef]
- Molnar, K.; Varga, R.; Jozsa, B.; Barczikai, D.; Krisch, E.; Nagy, K.S.; Varga, G.; Jedlovszky-Hajdu, A.; Puskas, J.E. Investigation of the Cytotoxicity of Electrospun Polysuccinimide-Based Fiber Mats. Polymers 2020, 12, 2324. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and biological application of polylactic acid. Molecules 2020, 25, 5023. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Aisyah, H.A.; Asyraf, M.R.M.; Hassan, S.A.; Zainudin, E.S.; Sapuan, S.M.; Sharma, S.; Bangar, S.P.; Jumaidin, R. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers 2022, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Kiss-Nagy, K.; Simongáti, G.; Ficzere, P. Investigation of 3D Printed Underwater Thruster Propellers Using CFD and Structural Simulations. Period. Polytech. Mech. Eng. 2024, 68, 70–77. [Google Scholar] [CrossRef]
- Tábi, T.; Hajba, S. Cross effect of natural rubber and annealing on the properties of poly (lactic acid). Period. Polytech. Mech. Eng. 2019, 64, 270–277. [Google Scholar] [CrossRef]
- Raquez, J.-M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542. [Google Scholar] [CrossRef]
- Jacobsen, S.; Fritz, H.; Degée, P.; Dubois, P.; Jérôme, R. Polylactide (PLA)—A new way of production. Polym. Eng. Sci. 1999, 39, 1311–1319. [Google Scholar] [CrossRef]
- Huang, C.; Thomas, N. Fabricating porous poly (lactic acid) fibres via electrospinning. Eur. Polym. J. 2018, 99, 464–476. [Google Scholar] [CrossRef]
- Da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018, 340, 9–14. [Google Scholar] [CrossRef]
- Kalita, N.K.; Nagar, M.K.; Mudenur, C.; Kalamdhad, A.; Katiyar, V. Biodegradation of modified Poly (lactic acid) based biocomposite films under thermophilic composting conditions. Polym. Test. 2019, 76, 522–536. [Google Scholar] [CrossRef]
- Anderson, J.M.; Shive, M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 1997, 28, 5–24. [Google Scholar] [CrossRef]
- Luckachan, G.E.; Pillai, C. Biodegradable polymers-a review on recent trends and emerging perspectives. J. Polym. Environ. 2011, 19, 637–676. [Google Scholar] [CrossRef]
- Park, T.G. Degradation of poly (D, L-lactic acid) microspheres: Effect of molecular weight. J. Control. Release 1994, 30, 161–173. [Google Scholar] [CrossRef]
- Chen, V.J.; Ma, P.X. The effect of surface area on the degradation rate of nano-fibrous poly (L-lactic acid) foams. Biomaterials 2006, 27, 3708–3715. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, S.; Cameron, R.E. The effect of initial polymer morphology on the degradation and drug release from polyglycolide. Biomaterials 2002, 23, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Park, T.G. Degradation of poly (lactic-co-glycolic acid) microspheres: Effect of copolymer composition. Biomaterials 1995, 16, 1123–1130. [Google Scholar] [CrossRef]
- Leonés, A.; Peponi, L.; Lieblich, M.; Benavente, R.; Fiori, S. In vitro degradation of plasticized PLA electrospun fiber mats: Morphological, thermal and crystalline evolution. Polymers 2020, 12, 2975. [Google Scholar] [CrossRef]
- Xu, X.; Chen, X.; Wang, Z.; Jing, X. Ultrafine PEG–PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. Eur. J. Pharm. Biopharm. 2009, 72, 18–25. [Google Scholar] [CrossRef]
- Yuan, X.; Mak, A.F.T.; Yao, K. Comparative observation of accelerated degradation of poly(l-lactic acid) fibres in phosphate buffered saline and a dilute alkaline solution. Polym. Degrad. Stab. 2002, 75, 45–53. [Google Scholar] [CrossRef]
- You, Y.; Min, B.M.; Lee, S.J.; Lee, T.S.; Park, W.H. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly (lactide-co-glycolide). J. Appl. Polym. Sci. 2005, 95, 193–200. [Google Scholar] [CrossRef]
- Bogdanova, A.; Pavlova, E.; Polyanskaya, A.; Volkova, M.; Biryukova, E.; Filkov, G.; Trofimenko, A.; Durymanov, M.; Klinov, D.; Bagrov, D. Acceleration of electrospun PLA degradation by addition of gelatin. Int. J. Mol. Sci. 2023, 24, 3535. [Google Scholar] [CrossRef]
- Dias, J.C.; Ribeiro, C.; Sencadas, V.; Botelho, G.; Ribelles, J.G.; Lanceros-Méndez, S. Influence of fiber diameter and crystallinity on the stability of electrospun poly (l-lactic acid) membranes to hydrolytic degradation. Polym. Test. 2012, 31, 770–776. [Google Scholar] [CrossRef]
- Zong, X.; Ran, S.; Kim, K.-S.; Fang, D.; Hsiao, B.S.; Chu, B. Structure and Morphology Changes during in Vitro Degradation of Electrospun Poly(glycolide-co-lactide) Nanofiber Membrane. Biomacromolecules 2003, 4, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Feng, X.; Jia, X.; Fan, Y. Influences of tensile load on in vitro degradation of an electrospun poly (l-lactide-co-glycolide) scaffold. Acta Biomater. 2010, 6, 2991–2996. [Google Scholar] [CrossRef] [PubMed]
- Mujica-Garcia, A.; Navarro-Baena, I.; Kenny, J.M.; Peponi, L. Influence of the processing parameters on the electrospinning of biopolymeric fibers. J. Renew. Mater. 2014, 2, 23–34. [Google Scholar] [CrossRef]
- Zubir, A.A.M.; Khairunnisa, M.; Surib, N.A.; NorRuwaida, J.; Rashid, M. Electrospinning of PLA with DMF: Effect of polymer concentration on the bead diameter of the electrospun fibre. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 012087. [Google Scholar]
- Fischer, E.; Sterzel, H.J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z. Und Z. Für Polym. 1973, 251, 980–990. [Google Scholar] [CrossRef]
- Thompson, C.; Chase, G.G.; Yarin, A.; Reneker, D. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 2007, 48, 6913–6922. [Google Scholar] [CrossRef]
- Casasola, R.; Thomas, N.L.; Trybala, A.; Georgiadou, S. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer 2014, 55, 4728–4737. [Google Scholar] [CrossRef]
- Gajjar, C.R.; King, M.W. Resorbable Fiber-Forming Polymers for Biotextile Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kost, B.; Basko, M.; Bednarek, M.; Socka, M.; Kopka, B.; Łapienis, G.; Biela, T.; Kubisa, P.; Brzeziński, M. The influence of the functional end groups on the properties of polylactide-based materials. Prog. Polym. Sci. 2022, 130, 101556. [Google Scholar] [CrossRef]
- Kuzelova Kostakova, E.; Meszaros, L.; Maskova, G.; Blazkova, L.; Turcsan, T.; Lukas, D. Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study. J. Nanomater. 2017, 2017, 8952390. [Google Scholar] [CrossRef]
- Laramée, A.W.; Pellerin, C. Raman Analysis of Orientation and Crystallinity in High Tg, Low Crystallinity Electrospun Fibers. Appl. Spectrosc. 2023, 77, 1289–1299. [Google Scholar] [CrossRef]
- Szabó, E.; Záhonyi, P.; Brecska, D.; Galata, D.L.; Mészáros, L.A.; Madarász, L.; Csorba, K.; Vass, P.; Hirsch, E.; Szafraniec-Szczęsny, J.; et al. Comparison of Amorphous Solid Dispersions of Spironolactone Prepared by Spray Drying and Electrospinning: The Influence of the Preparation Method on the Dissolution Properties. Mol. Pharm. 2020, 18, 317–327. [Google Scholar] [CrossRef]
- D’Amato, A.R.; Bramson, M.T.; Corr, D.T.; Puhl, D.L.; Gilbert, R.J.; Johnson, J. Solvent retention in electrospun fibers affects scaffold mechanical properties. Electrospinning 2018, 2, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Larrañaga, A.; Lizundia, E. A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur. Polym. J. 2019, 121, 109296. [Google Scholar] [CrossRef]
- Aharoni, S.M. Increased glass transition temperature in motionally constrained semicrystalline polymers. Polym. Adv. Technol. 1998, 9, 169–201. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, K.-Y.; Dong, Z.-M.; Dong, L.-S.; Li, Y.-S. Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(ester amide). Macromolecules 2007, 40, 6257–6267. [Google Scholar] [CrossRef]
- Tamburini, G.; Bertagnoli, S.; Tarricone, G.; Piva, S.; Sassella, A.; Lorenzi, R.; Paleari, A. Early stages of X-ray induced molecular unit modifications in poly(lactic acid). Polym. Degrad. Stab. 2023, 216, 110485. [Google Scholar] [CrossRef]
- Lee, H.W.; Insyani, R.; Prasetyo, D.; Prajitno, H.; Sitompul, J. Molecular Weight and Structural Properties of Biodegradable PLA Synthesized with Different Catalysts by Direct Melt Polycondensation. J. Eng. Technol. Sci. 2015, 47, 364–373. [Google Scholar] [CrossRef]
- Agarwal, M.; Koelling, K.W.; Chalmers, J.J. Characterization of the Degradation of Polylactic Acid Polymer in a Solid Substrate Environment. Biotechnol. Progr. 1998, 14, 517–526. [Google Scholar] [CrossRef]
- Kister, G.; Cassanas, G.; Vert, M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 1998, 39, 267–273. [Google Scholar] [CrossRef]
- Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Vargas-Villagran, H.; Romo-Uribe, A.; Teran-Salgado, E.; Dominguez-Diaz, M.; Flores, A. Electrospun polylactic acid non-woven mats incorporating silver nanoparticles. Polym. Bull. 2014, 71, 2437–2452. [Google Scholar] [CrossRef]
- del Rosario Salazar-Sánchez, M.; Campo-Erazo, S.D.; Villada-Castillo, H.S.; Solanilla-Duque, J.F. Structural changes of cassava starch and polylactic acid films submitted to biodegradation process. Int. J. Biol. Macromol. 2019, 129, 442–447. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikada, Y. Properties and morphology of poly (L-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly (L-lactide) in phosphate-buffered solution. Polym. Degrad. Stab. 2000, 67, 179–189. [Google Scholar] [CrossRef]
- Vaid, R.; Yildirim, E.; Pasquinelli, M.A.; King, M.W. Hydrolytic degradation of polylactic acid fibers as a function of ph and exposure time. Molecules 2021, 26, 7554. [Google Scholar] [CrossRef] [PubMed]
Fiber Mats | Degradation Period (Days) | Absorbance Units at Peak 870 cm−1 | Absorbance Units at Peak 1080 cm−1 | Absorbance Units at Peak 1180 cm−1 | Absorbance Units at Peak 1450 cm−1 | Absorbance Units at Peak 1750 cm−1 |
---|---|---|---|---|---|---|
0 | 0.04 | 0.30 | 0.22 | 0.06 | 0.22 | |
1 | 0.05 | 0.43 | 0.31 | 0.08 | 0.31 | |
E6 | 3 | 0.05 | 0.33 | 0.25 | 0.07 | 0.24 |
7 | 0.06 | 0.44 | 0.32 | 0.08 | 0.32 | |
28 | 0.05 | 0.44 | 0.32 | 0.08 | 0.32 | |
0 | 0.04 | 0.26 | 0.20 | 0.05 | 0.21 | |
1 | 0.04 | 0.31 | 0.23 | 0.06 | 0.23 | |
E10 | 3 | 0.04 | 0.33 | 0.25 | 0.06 | 0.25 |
7 | 0.04 | 0.24 | 0.19 | 0.05 | 0.19 | |
28 | 0.04 | 0.36 | 0.26 | 0.06 | 0.27 |
Electrospun Fiber Mat | Degradation Period (Days) | Young’s Modulus (MPa) | Strain at Break (%) | Yield Strength (MPa) |
---|---|---|---|---|
E6 | 0 | 168.6 ± 104.27 | 61.87 ± 10.85 | 10.93 ± 4.66 |
1 | 232.6 ± 27.11 | 67.58 ± 13.77 | 17.06 ± 0.99 | |
3 | 293.7 ± 159.75 | 62.52 ± 16.51 | 19.56 ± 1.82 | |
7 | 373.86 ± 93.33 | 20.05 ± 6.43 | 9.62 ± 1.63 | |
28 | 598.72 ± 229.51 | 20.10 ± 4.08 | 12.54 ± 4.04 | |
E10 | 0 | 316.48 ± 95.69 | 132.86 ± 20.91 | 21.91 ± 3.35 |
1 | 341.58 ± 178.02 | 118.91 ± 26.24 | 20.84 ± 3.15 | |
3 | 416.71 ± 145.12 | 113.26 ± 36.53 | 25.95 ± 6.63 | |
7 | 439.03 ± 156.67 | 123.64 ± 17.85 | 20.26 ± 4.55 | |
28 | 706.92 ± 333.62 | 50.53 ± 12.78 | 19.37 ± 6.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, K.K.; Molnár, K. The Influence of In Vitro Degradation on the Properties of Polylactic Acid Electrospun Fiber Mats. Fibers 2025, 13, 1. https://doi.org/10.3390/fib13010001
Abdullah KK, Molnár K. The Influence of In Vitro Degradation on the Properties of Polylactic Acid Electrospun Fiber Mats. Fibers. 2025; 13(1):1. https://doi.org/10.3390/fib13010001
Chicago/Turabian StyleAbdullah, Kardo Khalid, and Kolos Molnár. 2025. "The Influence of In Vitro Degradation on the Properties of Polylactic Acid Electrospun Fiber Mats" Fibers 13, no. 1: 1. https://doi.org/10.3390/fib13010001
APA StyleAbdullah, K. K., & Molnár, K. (2025). The Influence of In Vitro Degradation on the Properties of Polylactic Acid Electrospun Fiber Mats. Fibers, 13(1), 1. https://doi.org/10.3390/fib13010001