Microfibres Release from Textile Industry Wastewater Effluents Are Underestimated: Mitigation Actions That Need to Be Prioritised
Abstract
:1. Introduction
2. Literature Review
2.1. Industrial Textile Effluents as a Source of Microfibre Pollution
2.2. Textile Wet Processing Mill Effluents
Reference Source/Type | No of Mills/(No of Receiving Mills) | Discharge Type | Major Fibre Type | Treatment Processes | MP Retention/Removal Efficiency | Sample Region | Adjusted Discharged as Effluent to the Aquatic Environment | Effluent MF Length | The First Filtration Mesh Size (µm) | Finest Filter Size (µm) | Sample Volume (L) | Major Character-Isation Method | MF/L from Direct Effluent |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Textile Mill Effluents | |||||||||||||
[42] | 5 | Direct | Polyester, Polyamide, Cotton, Viscose | n.a. | n.a. | Sweden | 100–1450 MFs/L | 50–500 µm (75%) | n.a. | 100 | 0.85 | FTIR | |
[21] | 3 | Indirect | Viscose, cotton, synthetics | Primary, Secondary, and Tertiary | 84.7–99.5% (Secondary removal 44.3–96%) | China (Hang-zhou) | 0.05–90 * MFs/L | <1000 µm (>90%) 100–300 µm highest% | n.a. | 0.45 | 0.75 | Stereo microscopy | 5–1800 MFs/L |
[22] | 1 | Indirect | Polyester | Primary, Secondary | n.a. | China (Chang-zhou) | 18.1 * MPFs/L | 451 µm (<1000 µm 92%) <100 µm highest% | 10 | 1.5 | 5 | Raman | 361.6 MFs/L |
[43] | 1 | Indirect | Wool, Cotton, Acrylic, Polyamide, Polyester, Polypropy-lene, Viscose | Primary | 54% | Turkey | 15.5–120.2 * MFs/L | <1000 µm (82%) 100–500 µm highest% | n.a. | 0.7 | 1 | FTIR | 310–2404 MFs/L |
Laundries Textile Effluents | |||||||||||||
[46] | 5 laundries (x3 WWTPs) | Indirect (Without WWTP)/Direct) | Polyester, Cotton, Polycotton, Nylon, Rubber | Primary | Chemical x2 (65%–96%) | Sweden | 15–78 MFs/L (worst scenario estimate) | <400 µm are dominant | n.a. | 0.65 | 0.078–0.5 | FTIR/SEM-EDS | 500–375,000 (MPFs/L only) |
Primary, Secondary | Biological x1 97% | 1–5.2 MFs/L (best scenario estimate) | |||||||||||
[47] | 2 | Direct | Acrylic, Polyester | Nil | n.a. | Iran | 48–81 MPFs/L | <500 (81.6–85.6%) | 37 | 25 | 10 | Stereo microscopy | |
Industrial Wastewater Treatment Effluents (mainly received from textile mills) | |||||||||||||
[14] | 1 (33) | Direct | Polyester, Viscose, Natural fibres (Cotton, Linen, Wool), Polypropy-lene | Primary, Secondary | 95.1% (Primary 76%, Secondary 83.7%, Tertiary 95.1%) | China | 16.3 MFs/L | 30–1000 µm (76.7%) | 10 | 5 | 12 | FTIR | |
[48] | 5 (unknown) | Direct | Polyester, Viscose, Polyethylene, Polystyrene, | n.a. | 89.17–97.15% | China | 7.7–9.48 MPs/L | <1000 µm (>70%) | 25 | 5 | 15 | FTIR | |
[49] | 2 (unknown) | Direct | Polyester, Polyamide, Polypropy-lene, Polystyrene | Primary, Secondary | unknown | China (Chang-zhou) | 8–23 MPFs/L | <500 µm (89%) | 13 | 0.45 | 1 | Raman | |
[21] | 2 (130) | Direct | n.a. | Primary, Secondary, and Tertiary | 92.8–97.4% | China (Hang-zhou) | 537.5 MFs/L | <3000 µm (>70%) <1000 µm (100%) | n.a. | 0.45 | 0.75 | Stereo microscopy |
2.3. Commercial Textile Laundry Effluents
2.4. Industrial Wastewater Treatment Effluents
3. Pathways of Microfibres from Textile Industrial Effluents
4. Effectiveness of Wastewater Treatment in Reducing Microfibre Pollution
4.1. General Performance
NAFTA (incl. Rest of North America) | Western Europe | Japan | Central Europe and CIS | Middle East | Latin America and Caribbean | Oceania | India | China | Asia (excl. Japan, India, and China) | Africa | |
---|---|---|---|---|---|---|---|---|---|---|---|
Share of population covered in (OECD stat. 2017) | 100% | 93% | 100% | 9% | 2% | 14% | 12% | 0% | 0% | 4% | 0% |
Share going to Preliminary treatment | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Share going to Primary treatment | 17% | 8% | 13% | 5% | 30% | 53% | 18% | 65% | 3% | 30% | 65% |
Share going to Secondary treatment | 46% | 21% | 57% | 20% | 39% | 28% | 32% | 35% | 97% | 39% | 35% |
Share going to Tertiary treatment | 37% | 72% | 30% | 75% | 31% | 18% | 50% | 0% | 0% | 31% | 0% |
Reference | [68] | [69] | Due to a lack of better data, the treatment share was assumed to be the same as in India. |
4.2. Performance Specific to Industrial Textile Effluents
5. Detection and Quantification of Microfibres in Textile Effluents
5.1. Sampling
5.2. Pre-Treatment
5.3. Characterisation
6. Priorities to Mitigate Microfibres from Industrial Effluents
6.1. Understand the Complete Picture and Urgency to Address Microfibre Pollution
6.2. Raising Industrial Stakeholder Awareness and Taking Immediate Actions
6.3. Establishing a Standard Test Method for Measurement and Reporting
6.4. Better Product Design and Manufacturing Processes
6.5. Technology Advancement
6.6. Robust Sludge Management
6.7. Legislation and Policy
6.8. Responsible Consumption
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Woodall, L.C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G.L.J.; Coppock, R.; Sleight, V.; Calafat, A.; Rogers, A.D.; Narayanaswamy, B.E.; Thompson, R.C. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 2014, 1, 140317. [Google Scholar] [CrossRef] [PubMed]
- Belzagui, F.; Crespi, M.; Álvarez, A.; Gutiérrez-Bouzán, C.; Vilaseca, M. Microplastics’ emissions: Microfibers’ detachment from textile garments. Environ. Pollut. 2019, 248, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Rumi, S.S.; Hu, Y.; Abidi, N. Microfibers from synthetic textiles as a major source of microplastics in the environment: A review. Text. Res. J. 2021, 91, 2136–2156. [Google Scholar] [CrossRef]
- Rather, L.J.; Jameel, S.; Dar, O.A.; Ganie, S.A.; Bhat, K.A.; Mohammad, F. Advances in the sustainable technologies for water conservation in textile industries. In Water in Textiles and Fashion; Woodhead Publishing: Sawston, UK, 2019; pp. 175–194. [Google Scholar] [CrossRef]
- Iowe, D. A New Textiles Economy: Redesigning Fashion’s Future. Ellen MacArthur Found: Cowes, UK. 2017, pp. 1–150. Available online: https://ellenmacarthurfoundation.org/a-new-textiles-economy (accessed on 14 July 2023).
- AATCC. AATCC TM212-2021 Test Method for Fiber Fragment Release During Home Laundering. 2021. Available online: https://members.aatcc.org/store/tm212/3573/ (accessed on 9 April 2022).
- BS EN ISO 4484-1:2023; Textiles and Textile Products—Microplastics from Textile Sources Part 1: Determination of Material Loss from Fabrics During Washing. ISO: Geneva Switzerland, 2023. Available online: https://standardsdevelopment.bsigroup.com/projects/2020-00692#/section (accessed on 1 October 2023).
- Ozcan, G. Performance Evaluation of Water Repellent Finishes on Woven Fabric Properties. Text. Res. J. 2007, 77, 265–270. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Oceanic, N.; Arthur, C.; Baker, J.; Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. NOAA Marine Debris Program. 2009; p. 530. Available online: https://marinedebris.noaa.gov/proceedings-international-research-workshop-microplastic-marine-debris (accessed on 12 August 2019).
- Costa, M.F.; Sul, J.A.I.D.; Silva-Cavalcanti, J.S.; Araújo, M.C.B.; Spengler, A.; Tourinho, P.S. On the importance of size of plastic fragments and pellets on the strandline: A snapshot of a Brazilian beach. Environ. Monit. Assess. 2009, 168, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment; International Maritime Organization: London, UK, 2015; 96p. [Google Scholar] [CrossRef]
- Henry, B.; Laitala, K.; Klepp, I.G. Microplastic Pollution from Textiles: A Literature Review; Consumption Research Norway—SIFO, Oslo and Akershus University College of Applied Sciences: Oslo, Norway, 2018. [Google Scholar]
- Xu, X.; Hou, Q.; Xue, Y.; Jian, Y.; Wang, L. Pollution characteristics and fate of microfibers in the wastewater from textile dyeing wastewater treatment plant. Water Sci. Technol. 2018, 78, 2046–2054. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhu, L.; Wang, T.; Li, D. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Mar. Pollut. Bull. 2014, 86, 562–568. [Google Scholar] [CrossRef]
- Fischer, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 2016, 213, 648–657. [Google Scholar] [CrossRef]
- Barrows, A.P.W.; Neumann, C.A.; Berger, M.L.; Shaw, S.D. Grab vs. neuston tow net: A microplastic sampling performance comparison and possible advances in the field. Anal. Methods 2016, 9, 1446–1453. [Google Scholar] [CrossRef]
- Madhav, S.; Ahamad, A.; Singh, P.; Mishra, P.K. A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods. Environ. Qual. Manag. 2018, 27, 31–41. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017; p. 43. [Google Scholar]
- Zhou, H.; Zhou, L.; Ma, K. Microfiber from textile dyeing and printing wastewater of a typical industrial park in China: Occurrence, removal and release. Sci. Total. Environ. 2020, 739, 140329. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.M.; Park, C.; Chan, K.M.; Mak, D.C.W.; Fang, J.K.H.; Mitrano, D.M. Microplastic fibre releases from industrial wastewater effluent: A textile wet-processing mill in China. Environ. Chem. 2021, 18, 93–100. [Google Scholar] [CrossRef]
- Sanchez-Vidal, A.; Thompson, R.C.; Canals, M.; de Haan, W.P. The imprint of microfibres in southern European deep seas. PLoS ONE 2018, 13, e0207033. [Google Scholar] [CrossRef] [PubMed]
- Eunomia. Study to Support the Development of Measures to Combat A Range of Marine Litter Sources. Report for European Commission DG Environment. 2016. Available online: https://www.eunomia.co.uk/reports-tools/study-to-support-the-development-of-measures-to-combat-a-range-of-marine-litter-sources/v (accessed on 14 October 2019).
- UNEP. Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (With A Particular Focus on Marine Environment). 2018, pp. 1–99. Available online: https://www.unep.org/resources/report/mapping-global-plastics-value-chain-and-plastics-losses-environment-particular (accessed on 1 September 2022).
- Belzagui, F.; Gutiérrez-Bouzán, C.; Álvarez-Sánchez, A.; Vilaseca, M. Textile microfibers reaching aquatic environments: A new estimation approach. Environ. Pollut. 2020, 265, 114889. [Google Scholar] [CrossRef]
- Mintenig, S.; Int-Veen, I.; Löder, M.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017, 108, 365–372. [Google Scholar] [CrossRef]
- Talvitie, J.; Heinonen, M.; Pääkkönen, J.-P.; Vahtera, E.; Mikola, A.; Setälä, O.; Vahala, R. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci. Technol. 2015, 72, 1495–1504. [Google Scholar] [CrossRef]
- Zhao, J.; Ran, W.; Teng, J.; Liu, Y.; Liu, H.; Yin, X.; Cao, R.; Wang, Q. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China. Sci. Total. Environ. 2018, 640–641, 637–645. [Google Scholar] [CrossRef]
- Magnusson, K.; Norén, F. Screening of Microplastic Particles in and Down-Stream a Wastewater Treatment Plant. IVL Swedish Environmental Research Institute, Report C55. 2014. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:naturvardsverket:diva-2226 (accessed on 23 October 2022).
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D.L. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Zhou, W.; Lu, S.; Huang, W.; Yuan, Q.; Tian, M.; Lv, W.; He, D. Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China. Sci. Total. Environ. 2018, 652, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Dong, Q.; Zuo, Z.; Liu, Y.; Huang, X.; Wu, W.-M. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. J. Clean. Prod. 2019, 225, 579–586. [Google Scholar] [CrossRef]
- Zubris, K.A.V.; Richards, B.K. Synthetic fibers as an indicator of land application of sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Selonen, S.; Dolar, A.; Kokalj, A.J.; Skalar, T.; Dolcet, L.P.; Hurley, R.; van Gestel, C.A. Exploring the impacts of plastics in soil—The effects of polyester textile fibers on soil invertebrates. Sci. Total. Environ. 2019, 700, 134451. [Google Scholar] [CrossRef]
- Liao, Z.; Ji, X.; Ma, Y.; Lv, B.; Huang, W.; Zhu, X.; Fang, M.; Wang, Q.; Wang, X.; Dahlgren, R.; et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J. Hazard. Mater. 2021, 417, 126007. [Google Scholar] [CrossRef]
- Roos, S.; Arturin, O.L.; Hanning, A.-C. Microplastics Shedding from Polyester Fabrics. 2017. Available online: www.mistrafuturefashion.com (accessed on 28 May 2018).
- Shafiq, A.; Johnson, F.; Klassen, R.D.; Awaysheh, A. The Impact of Supply Risk on Sustainability Monitoring Practices and Performance. Acad. Manag. Proc. 2016, 2016, 17571. [Google Scholar] [CrossRef]
- Chan, K.M.C.; Fang, K.H.J.; Kan, C.W. Microfibres from Textile Industry Effluent. In Microfiber Pollution from Textiles: Research Advances and Mitigation, 1st ed.; Rathinamoorthy, R., Balasaraswathi, S.R., Eds.; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Swerea IVF. Investigation of the Occurrence of Microplastics from the Waste Water at Five Different Textile Production Facilities in Sweden; Swerea IVF-report 18004; Swerea: Mölndal, Sweden, 2018. [Google Scholar]
- Akyildiz, S.H.; Bellopede, R.; Sezgin, H.; Yalcin-Enis, I.; Yalcin, B.; Fiore, S. Detection and Analysis of Microfibers and Microplastics in Wastewater from a Textile Company. Microplastics 2022, 1, 572–586. [Google Scholar] [CrossRef]
- Rathinamoorthy, R.; Raja Balasaraswathi, S. Domestic Laundry and Microfiber Shedding of Synthetic Textiles. In Microplastic Pollution; Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Springer: Singapore, 2021; pp. 127–155. [Google Scholar] [CrossRef]
- Palacios-Marín, A.V.; Jabbar, A.; Tausif, M. Fragmented fiber pollution from common textile materials and structures during laundry. Text. Res. J. 2022, 92, 2265–2275. [Google Scholar] [CrossRef]
- Brodin, M.; Norin, H.; Hanning, A.-C.; Persson, C.; Okcabol, S. Microplastics from Industrial Laundries—A Laboratory Study of Laundry Effluents. 2018. Available online: http://www.diva-portal.org/smash/get/diva2:1633776/FULLTEXT01.pdf (accessed on 8 July 2019).
- Alipour, S.; Hashemi, S.H.; Alavian Petroody, S.S. Release of microplastic fibers from carpet-washing workshops wastewater. J. Water Wastewater 2021, 31, 27–33. [Google Scholar]
- Xu, X.; Jian, Y.; Xue, Y.; Hou, Q.; Wang, L. Microplastics in the wastewater treatment plants (WWTPs): Occurrence and removal. Chemosphere 2019, 235, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, B.; Duan, L.; Zhang, Y.; Zhou, Y.; Sui, Q.; Xu, D.; Qu, H.; Yu, G. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. Water Res. 2020, 182, 115956. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Di Pace, E.; Cocca, M.; Avella, M. The contribution of washing processes of synthetic clothes to microplastic pollution. Sci. Rep. 2019, 9, 6633. [Google Scholar] [CrossRef] [PubMed]
- Kärkkäinen, N.; Sillanpää, M. Quantification of different microplastic fibres discharged from textiles in machine wash and tumble drying. Environ. Sci. Pollut. Res. 2020, 28, 16253–16263. [Google Scholar] [CrossRef]
- Pirc, U.; Vidmar, M.; Mozer, A.; Kržan, A. Emissions of microplastic fibers from microfiber fleece during domestic washing. Environ. Sci. Pollut. Res. 2016, 23, 22206–22211. [Google Scholar] [CrossRef] [PubMed]
- Hartline, N.L.; Bruce, N.J.; Karba, S.N.; Ruff, E.O.; Sonar, S.U.; Holden, P.A. Microfiber Masses Recovered from Conventional Machine Washing of New or Aged Garments. Environ. Sci. Technol. 2016, 50, 11532–11538. [Google Scholar] [CrossRef] [PubMed]
- Cesa, F.S.; Turra, A.; Checon, H.H.; Leonardi, B.; Baruque-Ramos, J. Laundering and textile parameters influence fibers release in household washings. Environ. Pollut. 2019, 257, 113553. [Google Scholar] [CrossRef]
- Vassilenko, E.; Watkins, M.; Chastain, S.; Mertens, J.; Posacka, A.M.; Patankar, S.; Ross, P.S. Domestic laundry and microfiber pollution: Exploring fiber shedding from consumer apparel textiles. PLoS ONE 2021, 16, e0250346. [Google Scholar] [CrossRef]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef]
- Liu, K.; Wu, T.; Wang, X.; Song, Z.; Zong, C.; Wei, N.; Li, D. Consistent Transport of Terrestrial Microplastics to the Ocean through Atmosphere. Environ. Sci. Technol. 2019, 53, 10612–10619. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.; Ulke, J.; Font, A.; Chan, K.; Kelly, F. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2019, 136, 105411. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Dai, X.; Wang, Q.; van Loosdrecht, M.C.; Ni, B.-J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Conley, K.; Clum, A.; Deepe, J.; Lane, H.; Beckingham, B. Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Res. X 2019, 3, 100030. [Google Scholar] [CrossRef] [PubMed]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to microplastic pollution—Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Gong, M.; Wang, J.; Bassi, A. Current research trends on microplastic pollution from wastewater systems: A critical review. Rev. Environ. Sci. Bio/Technology 2019, 18, 207–230. [Google Scholar] [CrossRef]
- Xu, Z.; Bai, X.; Ye, Z. Removal and generation of microplastics in wastewater treatment plants: A review. J. Clean. Prod. 2021, 291, 125982. [Google Scholar] [CrossRef]
- Topare, N.S.; Attar, S.J.; Manefe, M.M. Sewage/Wastewater treatment technologies: A review. Sci. Rev. Chem. Commun. 2011, 1, 18–24. [Google Scholar]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Setälä, O.; Heinonen, M.; Koistinen, A. How well is microlitter purified from wastewater?—A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res. 2017, 109, 164–172. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. Wastewater treatment plant effluent as a source of microplastics: Review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci. Technol. 2016, 74, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Kalbar, P.P.; Muñoz, I.; Birkved, M. WW LCI v2: A second-generation life cycle inventory model for chemicals discharged to wastewater systems. Sci. Total. Environ. 2018, 622–623, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, K.; Cui, S.; Kang, Y.; An, L.; Lei, K. Removal of microplastics in municipal sewage from China’s largest water reclamation plant. Water Res. 2019, 155, 175–181. [Google Scholar] [CrossRef] [PubMed]
- The Microfibre Consortium. The Microfibre Consortium (TMC) Test Method—Quantification of Fibre Release from Fabrics during Domestic Laundering; The University of Leeds: Woodhouse, UK, 2019. [Google Scholar]
- Filho, G.A.N.; Casarin, R.C.; Casati, M.Z.; Giovani, E.M. PDT in non-surgical treatment of periodontitis in HIV patients: A split-mouth, randomized clinical trial. Lasers Surg. Med. 2012, 44, 296–302. [Google Scholar] [CrossRef] [PubMed]
- ZDHC Foundation. ZDHC Wastewater Guidelines V1.1. 2019. Available online: https://www.roadmaptozero.com/post/updated-zdhc-wastewater-guidelines-v1-1-released (accessed on 2 February 2022).
- Dreillard, M.; Barros, C.D.F.; Rouchon, V.; Emonnot, C.; Lefebvre, V.; Moreaud, M.; Guillaume, D.; Rimbault, F.; Pagerey, F. Quantification and morphological characterization of microfibers emitted from textile washing. Sci. Total. Environ. 2022, 832, 154973. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C. The Occurrence, Fate, and Effects of Microplastics in the Marine Environment. In Microplastic Contamination in Aquatic Environments; Elsevier: Amsterdam, The Netherlands, 2018; pp. 133–173. [Google Scholar] [CrossRef]
- Dyachenko, A.; Mitchell, J.; Arsem, N. Extraction and identification of microplastic particles from secondary wastewater treatment plant (WWTP) effluent. Anal. Methods 2016, 9, 1412–1418. [Google Scholar] [CrossRef]
- Stock, F.; Kochleus, C.; Bänsch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G. Sampling techniques and preparation methods for microplastic analyses in the aquatic environment—A review. TrAC Trends Anal. Chem. 2019, 113, 84–92. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Ryan, P.G.; Suaria, G.; Perold, V.; Pierucci, A.; Bornman, T.G.; Aliani, S. Sampling microfibres at the sea surface: The effects of mesh size, sample volume and water depth. Environ. Pollut. 2019, 258, 113413. [Google Scholar] [CrossRef]
- Prata, J.C.; Reis, V.; Matos, J.T.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Sci. Total. Environ. 2019, 690, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples. Environ. Sci. Pollut. Res. 2019, 26, 12109–12122. [Google Scholar] [CrossRef] [PubMed]
- ISO 4484-2; Textiles and Textile Products—Microplastics from Textile Sources—Part 2: Qualitative and Quantitative Evaluation of Microplastics. ISO: Geneva Switzerland, 2022. Available online: https://www.iso.org/standard/80011.html (accessed on 1 October 2023).
- Brodin, M.; Norin, H.; Hanning, A.-C.; Persson, C. Filters for Washing Machines Mitigation of Microplastic Pollution. 2018, p. 25. Available online: http://www.naturvardsverket.se/Documents/publ-kompl/1003-09_Report_Filters_for_washing_machines.pdf (accessed on 8 July 2019).
- Rudenko, O. Apparel and Fashion Overproduction Report with Infographic. Share Cloth. 2018. Available online: https://sharecloth.com/blog/reports/apparel-overproduction (accessed on 7 September 2019).
- Bruce, N.; Hartline, N.; Karba, S.; Ruff, B.; Sonar, S. Patagonia Microfiber Pollution and the Apparel Industry, Bren School of Environmental Science & Management. 2017, pp. 1–98. Available online: http://www.esm.ucsb.edu/research/2016Group_Projects/documents/PataPlastFinalReport.pdf (accessed on 2 October 2020).
- Lant, N.J.; Hayward, A.S.; Peththawadu, M.M.D.; Sheridan, K.J.; Dean, J.R. Microfiber release from real soiled consumer laundry and the impact of fabric care products and washing conditions. PLoS ONE 2020, 15, e0233332. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yang, T.; Mitrano, D.M.; Heuberger, M.; Hufenus, R.; Nowack, B. Systematic Study of Microplastic Fiber Release from 12 Different Polyester Textiles during Washing. Environ. Sci. Technol. 2020, 54, 4847–4855. [Google Scholar] [CrossRef] [PubMed]
- Tiffin, L.; Hazlehurst, A.; Sumner, M.; Taylor, M. Reliable quantification of microplastic release from the domestic laundry of textile fabrics. J. Text. Inst. 2021, 113, 558–566. [Google Scholar] [CrossRef]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.; Emenike, C.; Fauziah, S. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Asmita, K.; Shubhamsingh, T.; Tejashree, S.; Road, D.W. Isolation of Plastic Degrading Micro-organisms from Soil Samples Collected at Various Locations in Mumbai, India. Int. Res. J. Environ. Sci. 2015, 4, 77–85. [Google Scholar]
- Davidson, G. Ocean Cleaning Device Succeeds in Removing Plastic for the First Time. EcoWatch. 2019. Available online: https://www.ecowatch.com/indigenous-peoples-day-abandoning-columbus-day-2640950160.html (accessed on 13 October 2019).
- Changing Market Foundation. Synthetics Anonymous 2.0—Fashion’s Persistent Plastic Problem. 2022. Available online: https://changingmarkets.org/portfolio/fossil-fashion/ (accessed on 3 January 2023).
- The Microfibre Consortium, The Microfibre Roadmap. Available online: https://www.microfibreconsortium.com/roadmap (accessed on 30 November 2021).
- The Microfibre Consortium. Preliminary Guidelines: Control of Microfibres in Wastewater. May 2022. Available online: https://www.microfibreconsortium.com/preliminary-manufacturing-guidelines (accessed on 2 June 2022).
- MERMAIDS Consortium. Microfiber Release from Clothes after Washing: Hard Facts, Figures and Promising Solutions. Position Papper. 2017, pp. 1–9. Available online: https://www.plasticsoupfoundation.org/wp-content/uploads/2017/08/Position-Paper.Microfiber-release-from-clothes-after-washing.PSF_.pdf (accessed on 4 September 2018).
- Almroth, B.M.C.; Åström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.-K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. 2017, 25, 1191–1199. [Google Scholar] [CrossRef]
- Westphalen, H.; Abdelrasoul, A. Challenges and Treatment of Microplastics in Water. Water Chall. Urban. World 2018, 5, 71–82. [Google Scholar] [CrossRef]
- Gavigan, J.; Kefela, T.; Macadam-Somer, I.; Suh, S.; Geyer, R. Synthetic microfiber emissions to land rival those to waterbodies and are growing. PLoS ONE 2020, 15, e0237839. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.A.; Mahmud, I.; Quader, A. Textile Sludge Management by Incineration Technique. Procedia Eng. 2014, 90, 686–691. [Google Scholar] [CrossRef]
- UNEP. Turning off the Tap: How the World Can End Plastic Pollution and Create a Circular Economy|UNEP—UN Environment Programme. 2023. Available online: https://www.unep.org/resources/turning-off-tap-end-plastic-pollution-create-circular-economy (accessed on 3 October 2023).
- The Remedy Project. An Apparel Supplier’s Guide—Key Sustainability Legislation in the EU, US and UK—Asia Garment Hub. 2023. Available online: https://asiagarmenthub.net/resources/2023/an-apparel-suppliers-guide-key-sustainability-legislation-in-the-eu-us-and-uk_compressed.pdf/view (accessed on 1 August 2023).
Wastewater Treatment Options | Microplastic Fibre Removal Efficiency |
---|---|
Preliminary | 58.0% |
Primary | 87.0% |
Secondary | 92.2% |
Tertiary | 96.5% |
Standard | TMC Method-2019 [71] | AATCC TM212-2021 [6] | BS EN ISO 4484-1:2023 [7] |
---|---|---|---|
Description | Quantification of fibre release from fabrics due to domestic laundering | Test Method for Fibre Fragment Release During Home Laundering | Microplastics from Textile Source—Determination of material loss from fabrics during washing |
Scope | All textile materials | All textile materials | Synthetic and natural fibres |
Sample Specimens | 8 | 4 | 4 |
Resultant Dimensions | 100 mm × 240 mm | 100 ± 10 mm × 240 ± 10 mm | 100 ± 10 mm × 240 ± 10 mm |
Pre-treatment | Dry at 50 °C 4 h | Option A: 21 ± 2 °C, 65 ± 5% RH 4 h Option B: 70 ± 2 °C 4 h (desiccator 30 min) | 50 ± 3 °C dry to constant mass, cool in a desiccator |
Liquor | 360 mL, grade 3 water, 50 steel balls | 360 mL, grade 3 water, 50 steel balls | 360 mL, grade 3, 50 steel balls |
Detergent | Nil | Option A: 0.25% Option B: Water only | Nil |
Wash Conditions | 40 °C for 45 min, with a rotation speed of 40 ± 2/min | Wash temperature as the label for 45 min, rotation speed of 40 ± 2/min | 40 ± 3 °C for 45 ± 1 min, rotation speed of 40 ± 2/min |
Blank Test | Not Required | Required, every 4 specimens | Required, every 4 specimens |
Filter | 1.6 μm pore size, 47 mm diameter Dry at 50 °C 4 h | 1.6 μm pore size, 47 mm diameter, rinse and dry as Pre-treatment | 1.6 μm pore size, 47 mm diameter, Dry at 50 ± 3 °C 4 h |
Balance Precision | 0.0001 g | 0.0001 g | 0.1 mg |
Calculation | Fibre release (%) = 100 × (W2 − W1)/S | Fibre fragment release (g) = W2 − W1 Fibre fragment release (%) = 100 × (W2 − W1)/S | Fibre fragment release (g) = M2 − M1 Fibre fragment release (%) = 100 × (M2 − M1)/S |
Reporting | Average mass of fibre fragment release (significant digits 3) Average% of fibre fragment release | The average mass of fibre fragment release and standard deviation Average% fibre fragment release and standard deviation | Mean of mass loss Mass loss% of the original specimen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, C.K.-M.; Fang, J.K.-H.; Fei, B.; Kan, C.-W. Microfibres Release from Textile Industry Wastewater Effluents Are Underestimated: Mitigation Actions That Need to Be Prioritised. Fibers 2023, 11, 105. https://doi.org/10.3390/fib11120105
Chan CK-M, Fang JK-H, Fei B, Kan C-W. Microfibres Release from Textile Industry Wastewater Effluents Are Underestimated: Mitigation Actions That Need to Be Prioritised. Fibers. 2023; 11(12):105. https://doi.org/10.3390/fib11120105
Chicago/Turabian StyleChan, Carmen Ka-Man, James Kar-Hei Fang, Bin Fei, and Chi-Wai Kan. 2023. "Microfibres Release from Textile Industry Wastewater Effluents Are Underestimated: Mitigation Actions That Need to Be Prioritised" Fibers 11, no. 12: 105. https://doi.org/10.3390/fib11120105
APA StyleChan, C. K. -M., Fang, J. K. -H., Fei, B., & Kan, C. -W. (2023). Microfibres Release from Textile Industry Wastewater Effluents Are Underestimated: Mitigation Actions That Need to Be Prioritised. Fibers, 11(12), 105. https://doi.org/10.3390/fib11120105