A Review on the Utilization of Date Palm Fibers as Inclusion in Concrete and Mortar
Abstract
:1. Introduction
2. Properties of DPF
3. Properties of Concrete and Mortar with DPF Fibers
3.1. Mixing Method
3.2. Density
3.3. Porosity and Water Absorption
3.4. Compressive and Flexural Strength
3.5. Thermal Conductivity
4. Conclusions
Funding
Conflicts of Interest
References
- Vantadori, S.; Carpinteri, A.; Zanichelli, A. Lightweight construction materials: Mortar reinforced with date-palm mesh fibres. Theor. Appl. Fract. Mech. 2019, 100, 39–45. [Google Scholar] [CrossRef]
- Li, Y.; Deng, Y.G. Mechanical properties and corrosion resistance of high performance fiber-reinforced concrete with steel or amorphous alloy fibers. Mater. Res. Express 2021, 8, 095201. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Q.; Cheng, M. Study on mechanical properties and air-void structure characteristics of hybrid fiber fly ash concrete under sulfate attack. Mater. Res. Express 2021, 8, 105504. [Google Scholar] [CrossRef]
- Abuzaid, E.K.M. Behavior and Strength of Steel-Carbon-Plastic Hybrid Fiber Reinforced Concrete Beams. IOP Conf. Ser. Mater. Sci. Eng. 2019, 518, 022061. [Google Scholar] [CrossRef]
- Farooq, M.; Banthia, N. Strain-hardening fiber reinforced polymer concrete with a low carbon footprint. Constr. Build. Mater. 2022, 314, 125705. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Liu, M.Y.J. Contribution of acrylic fibre addition and ground granulated blast furnace slag on the properties of lightweight concrete. Constr. Build. Mater. 2015, 95, 686–695. [Google Scholar] [CrossRef]
- Wu, H.; Zuo, J.; Yuan, H.; Zillante, G.; Wang, J. Cross-regional mobility of construction and demolition waste in Australia: An exploratory study. Resour. Conserv. Recycl. 2020, 156, 104710. [Google Scholar] [CrossRef]
- Sandanayake, M.; Bouras, Y.; Haigh, R.; Vrcelj, Z. Current sustainable trends of using waste materials in concrete—A decade review. Sustainability 2020, 12, 9622. [Google Scholar] [CrossRef]
- Ali, M.B.; Saidur, R.; Hossain, M.S. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- Anand, S.; Vrat, P.; Dahiya, R.P. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. J. Environ. Manag. 2006, 79, 383–398. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage—Summary for Policymakers of the Intergovernmental Panel on Climate Change. Assessment; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Haigh, R.; Sandanayake, M.; Bouras, Y.; Vrcelj, Z. A review of the mechanical and durability performance of kraft-fibre reinforced mortar and concrete. Constr. Build. Mater. 2021, 297, 123759. [Google Scholar] [CrossRef]
- Song, H.; Liu, J.; He, K.; Ahmad, W. A comprehensive overview of jute fiber reinforced cementitious composites. Case Stud. Constr. Mater. 2021, 15, e00724. [Google Scholar] [CrossRef]
- Kesikidou, F.; Stefanidou, M. Natural fiber-reinforced mortars. J. Build. Eng. 2019, 25, 100786. [Google Scholar] [CrossRef]
- Ardanuy, M.; Claramunt, J.; Toledo Filho, R.D. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015, 79, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Quiñones-Bolaños, E.; Gómez-Oviedo, M.; Mouthon-Bello, J.; Sierra-Vitola, L.; Berardi, U.; Bustillo-Lecompte, C. Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing. J. Environ. Manag. 2021, 277, 111503. [Google Scholar] [CrossRef]
- Poletanovic, B.; Janotka, I.; Janek, M.; Bacuvcik, M.; Merta, I. Influence of the NaOH-treated hemp fibres on the properties of fly-ash based alkali-activated mortars prior and after wet/dry cycles. Constr. Build. Mater. 2021, 309, 125072. [Google Scholar] [CrossRef]
- Abdullah, H.M.; Abdul Latif, M.H.; Attiya, H.G. Characterization and determination of lignin in different types of Iraqi phoenix date palm pruning woods. Int. J. Biol. Macromol. 2013, 61, 340–346. [Google Scholar] [CrossRef]
- Belakroum, R.; Gherfi, A.; Kadja, M.; Maalouf, C.; Lachi, M.; El Wakil, N.; Mai, T. Design and properties of a new sustainable construction material based on date palm fibers and lime. Constr. Build. Mater. 2018, 184, 330–343. [Google Scholar] [CrossRef]
- Nixon, R.W. The date palm—“Tree of Life” in the subtropical deserts. Econ. Bot. 1951, 5, 274–301. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2020 Main Report; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Al-Fuhaid, K.M. The Famous Date Varieties in the Kingdom of Saudi Arabia, 1st ed.; Ministry of Higher Education: Riyadh, Saudi Arabia, 2006.
- Agoudjil, B.; Benchabane, A.; Boudenne, A.; Ibos, L.; Fois, M. Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy Build. 2011, 43, 491–497. [Google Scholar] [CrossRef]
- El-Juhany, L.I. Surveying of lignocellulosic agricultural residues in some major cities of Saudi Arabia. Res. Bull. 2001, 1, 5–23. [Google Scholar]
- Chikhi, M. Young’s modulus and thermophysical performances of bio-sourced materials based on date palm fibers. Energy Build. 2016, 129, 589–597. [Google Scholar] [CrossRef]
- Benmansour, N.; Agoudjil, B.; Gherabli, A.; Kareche, A.; Boudenne, A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014, 81, 98–104. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Lewin, M. Handbook of Fiber Chemistry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Saadaoui, N.; Rouilly, A.; Fares, K.; Rigal, L. Characterization of date palm lignocellulosic by-products and self-bonded composite materials obtained thereof. Mater. Des. 2013, 50, 302–308. [Google Scholar] [CrossRef]
- Bourmaud, A.; Dhakal, H.; Habrant, A.; Padovani, J.; Siniscalco, D.; Ramage, M.H.; Beaugrand, J.; Shah, D.U. Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Compos. Part A Appl. Sci. Manuf. 2017, 103, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Boumhaout, M.; Boukhattem, L.; Hamdi, H.; Benhamou, B.; Ait Nouh, F. Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date palm fibers mesh. Constr. Build. Mater. 2017, 135, 241–250. [Google Scholar] [CrossRef]
- Taallah, B.; Guettala, A.; Guettala, S.; Kriker, A. Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Constr. Build. Mater. 2014, 59, 161–168. [Google Scholar] [CrossRef]
- Kriker, A.; Bali, A.; Debicki, G.; Bouziane, M.; Chabannet, M. Durability of date palm fibres and their use as reinforcement in hot dry climates. Cem. Concr. Compos. 2008, 30, 639–648. [Google Scholar] [CrossRef]
- Tioua, T.; Kriker, A.; Barluenga, G.; Palomar, I. Influence of date palm fiber and shrinkage reducing admixture on self-compacting concrete performance at early age in hot-dry environment. Constr. Build. Mater. 2017, 154, 721–733. [Google Scholar] [CrossRef]
- Kriker, A.; Debicki, G.; Bali, A.; Khenfer, M.M.; Chabannet, M. Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cem. Concr. Compos. 2005, 27, 554–564. [Google Scholar] [CrossRef]
- Abani, S.; Hafsi, F.; Kriker, A.; Bali, A. Valorisation of Date Palm Fibres in Sahara Constructions. Energy Procedia 2015, 74, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Bamaga, S.O. Physical and mechanical properties of mortars containing date palm fibers. Mater. Res. Express 2022, 9, 015102. [Google Scholar] [CrossRef]
- Boukhattem, L.; Boumhaout, M.; Hamdi, H.; Benhamou, B.; Ait Nouh, F. Moisture content influence on the thermal conductivity of insulating building materials made from date palm fibers mesh. Constr. Build. Mater. 2017, 148, 811–823. [Google Scholar] [CrossRef]
- Migneault, S.; Koubaa, A.; Erchiqui, F.; Chaala, A.; Englund, K.; Wolcott, M.P. Effects of processing method and fiber size on the structure and properties of wood-plastic composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 80–85. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Richardson, M.O.W. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Benaimeche, O.; Carpinteri, A.; Mellas, M.; Ronchei, C.; Scorza, D.; Vantadori, S. The influence of date palm mesh fibre reinforcement on flexural and fracture behaviour of a cement-based mortar. Compos. Part B Eng. 2018, 152, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Zanichelli, A.; Carpinteri, A.; Fortese, G.; Ronchei, C.; Scorza, D.; Vantadori, S. Contribution of date-palm fibres reinforcement to mortar fracture toughness. Procedia Struct. Integr. 2018, 13, 542–547. [Google Scholar] [CrossRef]
- Ozerkan, N.G.; Ahsan, B.; Mansour, S.; Iyengar, S.R. Mechanical performance and durability of treated palm fiber reinforced mortars. Int. J. Sustain. Built Environ. 2013, 2, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Chennouf, N.; Agoudjil, B.; Boudenne, A.; Benzarti, K.; Bouras, F. Hygrothermal characterization of a new bio-based construction material: Concrete reinforced with date palm fibers. Constr. Build. Mater. 2018, 192, 348–356. [Google Scholar] [CrossRef]
- Kareche, A.; Agoudjil, B.; Haba, B.; Boudenne, A. Study on the Durability of New Construction Materials Based on Mortar Reinforced with Date Palm Fibers Wastes. Waste Biomass Valoriz. 2020, 11, 3801–3809. [Google Scholar] [CrossRef]
- Haba, B.; Agoudjil, B.; Boudenne, A.; Benzarti, K. Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete. Constr. Build. Mater. 2017, 154, 963–971. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- MA Ismail, D. Compressive and Tensile Strength of Natural Fibre-reinforced Cement base Composites. AL-Rafdain Eng. J. (AREJ) 2007, 15, 42–51. [Google Scholar] [CrossRef]
- Braiek, A.; Karkri, M.; Adili, A.; Ibos, L.; Ben Nasrallah, S. Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy Build. 2017, 140, 268–279. [Google Scholar] [CrossRef]
- Chennouf, N.; Agoudjil, B.; Alioua, T.; Boudenne, A.; Benzarti, K. Experimental investigation on hygrothermal performance of a bio-based wall made of cement mortar filled with date palm fibers. Energy Build. 2019, 202, 109413. [Google Scholar] [CrossRef]
- Khedari, J.; Suttisonk, B.; Pratinthong, N.; Hirunlabh, J. New lightweight composite construction materials with low thermal conductivity. Cem. Concr. Compos. 2001, 23, 65–70. [Google Scholar] [CrossRef]
Ref. | Fiber Type | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Ash (%) | Other (%) |
---|---|---|---|---|---|---|
[29] | DPF mesh | 34 ± 0.7 | 28.9 ± 1.8 | 18.2 ± 0.7 | 12.3 ± 0.2 | 2.5 |
[29] | DPF leaves | 29.7 ± 1.3 | 23.3 ± 1.2 | 11.6 ± 1.3 | 9.2 ± 0.4 | 16.5 |
[30] | DPF mesh | 45.1 ± 3.4 | 27.7 ± 1.5 | 16.9 ± 0.3 | 1.7 ± 0.1 | 8.6 |
[28] | Bamboo | 36.1–54.6 | 11.4–16.6 | 20.5–28.5 | - | - |
Coir | 32–43.4 | 3.3 | 40–45.8 | - | - |
Ref. | Fiber Type | Length (mm) | Tensile Strength (MPa) | Elongation (%) | Modulus of Elasticity (GPa) |
---|---|---|---|---|---|
[1,33,34,35,36] | DPF (Mesh) | 100 | 170 ± 40 | 16 ± 3 | 4 ± 2 |
60 | 240 ± 30 | 12 ± 2 | 5 ± 2 | ||
20 | 290 ± 20 | 11 ± 2 | 5 ± 3 | ||
[37] | DPF (Leaves) | 60 | 39.10 | 1.06 | 6.4 |
[27] | Hemp | - | 690 | 1.6 | 70 |
Sisal | - | 511–635 | 1.5 | 9.4–22 | |
Oil Palm | - | 400–627 | 14.5 | 1.44 |
Ref. | Fiber Type | Diameter (mm) | Bulk Density (kg/m3) | Absolute Density (kg/m3) | Absorption (%) |
---|---|---|---|---|---|
[33,34,35,36,41,42] | DPF Mesh | 0.1–0.8 | 512–1088 | 1300–1450 | 96–202 |
[37] | DPF Leaves | - | 1277.27 ± 15 | - | 94.74 ± 3.15 |
[27] | Hemp | - | 1480 | - | 9 |
Sisal | - | 1500 | - | 11 | |
Pineapple | - | 800–1600 | - | 13 |
Ref. | DPF Properties | DPF Concrete/Mortar | |||||
---|---|---|---|---|---|---|---|
Density | Water Absorption | Density | Water Absorption | Compressive Strength | Flexural Strength | Thermal Conductivity | |
[35] | NF EN ISO 1973 | ASTM C127/1988 | NF EN12390-4 (2000) | NFP 18-409 (1993) | |||
[26] | NF EN196-1 | hot wire method | |||||
[38] | Equation (1) | Equation (2) | Equation (2) | Two boxes method | |||
[1] | UNI EN 1015-10 (2007) | UNI EN 96-1 | |||||
[43] | ASTM C1403 (2012) | ASTM C109 (2012) | ASTM C293 (2010) | ||||
[31] | Moroccan standard: NM 10.1.005 | Moroccan standard: NM 10.1.005 | Two boxes method | ||||
[19] | Equation (2) | ASTM C39/C39M -2016 | ASTM C78-2002 | hot wire method | |||
[37] | ASTM C127-2014 | ASTM C127-2014 | ASTM C642-1997 | ASTM C642-1997 | ASTM C109 | ||
Ref. | Mixture Type | w/c (%) | DPF (%) | Cement (kg/m3) | Sand (kg/m3) | Aggregate (kg/m3) |
---|---|---|---|---|---|---|
[33,35] | concrete | 0.6 | 0 | 400 | 750 | 1000 |
0.675 | 2 (by volume) | 400 | 750 | 982 | ||
0.725 | 3 (by volume) | 400 | 750 | 973 | ||
[43] | Mortar | 0.485 | 0 | 400 | 1197 | - |
0.515 | 0.5 (by weight) | 400 | 1173 | - | ||
0.540 | 1 (by weight) | 400 | 1157 | - | ||
0.550 | 2 (by weight) | 400 | 1127 | - |
Ref. | Mixture Type | DPF Type | DPF Content (%) | DPF Length (mm) | Density (kg/m3) | Water Absorption (%) | Compressive Strength (MPa) | Flexural Strength (MPa) | Thermal Conductivity (W/m.K) |
---|---|---|---|---|---|---|---|---|---|
[1] | mortar | mesh | 2 (by volume) | 7–10 | 2618.89 | - | - | ≃ 5.6 | - |
6 (by volume) | 7–10 | 2544.67 | - | - | ≃ 3.9 | - | |||
10 (by volume) | 7–10 | 2470.45 | - | - | ≃ 3 | - | |||
[26] | mortar | Mix of Petiole and rachis | 5 (by weight) | 3 | 1476 | ≃6 | 2.75 | - | 0.39 |
6 | 1427 | ≃6 | 2.82 | - | 0.63 | ||||
10 (by weight) | 3 | 1374 | ≃7 | 1.83 | - | 0.24 | |||
6 | 1356 | ≃8.5 | 2.56 | - | 0.43 | ||||
15 (by weight) | 3 | 984 | ≃15 | 1.44 | - | 0.14 | |||
6 | 1254 | ≃22 | 2.67 | - | 0.22 | ||||
[31] | mortar | mesh | 21 (by volume) | 20–50 | 1671 | - | ≃6 | ≃3.7 | ≃0.58 |
35 (by volume) | 20–50 | 1448 | - | ≃5 | ≃1.5 | ≃0.41 | |||
51 (by volume) | 20–50 | 1217 | - | ≃3.5 | ≃1.35 | ≃0.26 | |||
[35] | Concrete | mesh | 2 (by volume) | 15 | - | ≃29 | - | - | |
60 | - | ≃24 | - | - | |||||
3 (by volume) | 15 | - | ≃24.5 | - | - | ||||
60 | - | ≃18.5 | - | - | |||||
[43] | mortar | leave | 0.5 (by weight) | 100 | - | ≃6.1 | ≃ 3.5 | ≃10.5 | - |
1.0 (by weight) | 100 | - | ≃5.7 | ≃24 | ≃10 | - | |||
2.0 (by weight) | 100 | - | ≃4.6 | ≃20 | ≃8.3 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamaga, S.O. A Review on the Utilization of Date Palm Fibers as Inclusion in Concrete and Mortar. Fibers 2022, 10, 35. https://doi.org/10.3390/fib10040035
Bamaga SO. A Review on the Utilization of Date Palm Fibers as Inclusion in Concrete and Mortar. Fibers. 2022; 10(4):35. https://doi.org/10.3390/fib10040035
Chicago/Turabian StyleBamaga, S. O. 2022. "A Review on the Utilization of Date Palm Fibers as Inclusion in Concrete and Mortar" Fibers 10, no. 4: 35. https://doi.org/10.3390/fib10040035
APA StyleBamaga, S. O. (2022). A Review on the Utilization of Date Palm Fibers as Inclusion in Concrete and Mortar. Fibers, 10(4), 35. https://doi.org/10.3390/fib10040035