Vascular Graft Infections: An Overview of Novel Treatments Using Nanoparticles and Nanofibers
Abstract
:1. Introduction
1.1. Intracavitary Graft Infections
1.2. Extracavitary Graft Infections
1.3. Preventing Graft Infections
2. Nanofibers
2.1. Nanofibrous Coating of Premade VG
2.2. De Novo Nanofibrous VG
3. Nanoparticles
3.1. Metal Nanoparticles
3.2. Metal Nanoparticles with Antiseptic Polymers
3.3. Antibiotic-Activated Cyclodextrins
3.4. Nanoparticles Used against Other Biofilm Infections
4. Outlook
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Levin, S.R.; Farber, A.; Cheng, T.W.; Arinze, N.; Jones, D.W.; Kalish, J.A.; Rybin, D.; Siracuse, J.J. Risk assessment of significant upper extremity arteriovenous graft infection in the vascular quality initiative. J. Vasc. Surg. 2020, 71, 913–919. [Google Scholar] [CrossRef]
- Radakovic, D.; Reboredo, J.; Helm, M.; Weigel, T.; Schürlein, S.; Kupczyk, E.; Leyh, R.G.; Walles, H.; Hansmann, J. A multilayered electrospun graft as vascular access for hemodialysis. PLoS ONE 2017, 12, e0185916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, G.A.; Forouzanfar, M.H.; Moran, A.E.; Barber, R.; Nguyen, G.; Feigin, V.L.; Naghavi, M.; Mensah, G.A.; Murray, C.J. Demographic and epidemiologic drivers of global cardiovascular mortality. N. Engl. J. Med. 2015, 372, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharamti, A.; Kanafani, Z.A. Vascular graft infections: An update. Infect. Dis. Clin. 2018, 32, 789–809. [Google Scholar] [CrossRef] [PubMed]
- Legout, L.; Sarraz-Bournet, B.; D’Elia, P.V.; Devos, P.; Pasquet, A.; Caillaux, M.; Wallet, F.; Yazdanpanah, Y.; Senneville, E.; Haulon, S.; et al. Characteristics and prognosis in patients with prosthetic vascular graft infection: A prospective observational cohort study. Clin. Microbiol. Infect. 2012, 18, 352–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiesa, R.; Astore, D.; Frigerio, S.; Garriboli, L.; Piccolo, G.; Castellano, R.; Scalamogna, M.; Odero, A.; Pirrelli, S.; Biasi, G.; et al. Vascular prosthetic graft infection: Epidemiology, bacteriology, pathogenesis and treatment. Acta Chir. Belg. 2002, 102, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Hayes, P.D.; Nasim, A.; London, N.J.; Sayers, R.D.; Barrie, W.W.; Bell, P.R.; Naylor, A.R. In situ replacement of infected aortic grafts with rifampicin-bonded prostheses: The Leicester experience (1992 to 1998). J. Vasc. Surg. 1999, 30, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Swain, T.W., III; Calligaro, K.D.; Dougherty, M.D. Management of infected aortic prosthetic grafts. Vasc. Endovasc. Surg. 2004, 38, 75–82. [Google Scholar] [CrossRef]
- Baddour, L.M.; Bettmann, M.A.; Bolger, A.F.; Epstein, A.E.; Ferrieri, P.; Gerber, M.A.; Gewitz, M.H.; Jacobs, A.K.; Levison, M.E.; Newburger, J.W.; et al. Nonvalvular cardiovascular device–related infections. Circulation 2003, 108, 2015–2031. [Google Scholar] [CrossRef]
- Knight, B.C.; Tait, W.F. Dacron patch infection following carotid endarterectomy: A systematic review of the literature. Eur. J. Vasc. Endovasc. Surg. 2009, 37, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asciutto, G.; Geier, B.; Marpe, B.; Hummel, T.; Mumme, A. Dacron patch infection after carotid angioplasty. A report of 6 cases. Eur. J. Vasc. Endovasc. Surg. 2007, 33, 55–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naylor, A.R.; Payne, D.; London, N.J.M.; Thompson, M.M.; Dennis, M.S.; Sayers, R.D.; Bell, P.R.F. Prosthetic patch infection after carotid endarterectomy. Eur. J. Vasc. Endovasc. Surg. 2002, 23, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erb, S.; Sidler, J.A.; Elzi, L.; Gurke, L.; Battegay, M.; Widmer, A.F.; Weisser, M. Surgical and antimicrobial treatment of prosthetic vascular graft infections at different surgical sites: A retrospective study of treatment outcomes. PLoS ONE 2014, 9, e112947. [Google Scholar] [CrossRef]
- Kahlberg, A.; Melissano, G.; Mascia, D.; Loschi, D.; Grandi, A.; Chiesa, R. How to best treat infectious complications of open and endovascular thoracic aortic repairs. in Seminars in vascular surgery. Semin. Vasc. Surg. 2017, 30, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Sekar, N. Primary aortic infections and infected aneurysms. Ann. Vasc. Dis. 2010, 3, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Kahlberg, A.; Grandi, A.; Loschi, D.; Vermassen, F.; Moreels, N.; Chakfe, N. Infection of descending thoracic aortic graft and endograft: A systematic review. J. Vasc. Surg. 2019, 69, 1941. [Google Scholar] [CrossRef]
- Vogel, T.R.; Symons, R.; Flum, D.R. The incidence and factors associated with graft infection after aortic aneurysm repair. J. Vasc. Surg. 2008, 47, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Berger, P.; De Borst, G.J.; Moll, F.L. Current opinions about diagnosis and treatment strategy for aortic graft infections in The Netherlands. J. Cardiovasc. Surg. 2015, 56, e76. [Google Scholar]
- Argyriou, C.; Georgiadis, G.S.; Lazarides, M.K.; Georgakarakos, E.; Antoniou, G.A. Endograft infection after endovascular abdominal aortic aneurysm repair: A systematic review and meta-analysis. J. Endovasc. Ther. 2017, 24, 688–697. [Google Scholar] [CrossRef]
- Wilson, W.R.; Bower, T.C.; Creager, M.A.; Amin-Hanjani, S.; O’Gara, P.T.; Lockhart, P.B.; Darouiche, R.O.; Ramlawi, B.; Derdeyn, C.P.; Bolger, A.F.; et al. Vascular graft infections, mycotic aneurysms, and endovascular infections: A scientific statement from the American heart association. Circulation 2016, 134, e412–e460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaar, C.I.O.; Zafar, M.A.; Velasquez, C.; Saeyeldin, A.; Elefteriades, J.A. Complex two-stage open surgical repair of an aortoesophageal fistula after thoracic endovascular aortic repair. J. Vasc. Surg. Cases Innov. Tech. 2019, 5, 261–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, P.R.; Pfammatter, T.; Schlumpf, R.; Genoni, M.; Künzli, A.; Candinas, D.; Zünd, G.; Turina, M. In situ repair of aortobronchial, aortoesophageal, and aortoenteric fistulae with cryopreserved aortic homografts. J. Vasc. Surg. 1997, 26, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Chiesa, R.; Tshomba, Y.; Kahlberg, A.; Marone, E.M.; Civilini, E.; Coppi, G.; Psacharopulo, D.; Melissano, G. Management of thoracic endograft infection. J. Cardiovasc. Surg. 2010, 51, 15. [Google Scholar]
- Spiliotopoulos, K.; Preventza, O.; Green, S.Y.; Price, M.D.; Amarasekara, H.S.; Davis, B.M.; Kim, I.; LeMaire, S.A.; Coselli, J.S. Open descending thoracic or thoracoabdominal aortic approaches for complications of endovascular aortic procedures: 19-year experience. J. Thorac. Cardiovasc. Surg. 2018, 155, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girdauskas, E.; Falk, V.; Kuntze, T.; Borger, M.A.; Schmidt, A.; Scheinert, D.; Mohr, F.W. Secondary surgical procedures after endovascular stent grafting of the thoracic aorta: Successful approaches to a challenging clinical problem. J. Thorac. Cardiovasc. Surg. 2008, 136, 1289–1294. [Google Scholar] [CrossRef] [Green Version]
- Oderich, G.S.; Bower, T.C.; Cherry, K.J., Jr.; Panneton, J.M.; Sullivan, T.M.; Noel, A.A.; Carmo, M.; Cha, S.; Kalra, M.; Gloviczki, P. Evolution from axillofemoral to in situ prosthetic reconstruction for the treatment of aortic graft infections at a single center. J. Vasc. Surg. 2006, 43, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Bandyk, D.F.; Novotney, M.L.; Back, M.R.; Johnson, B.L.; Schmacht, D.C. Expanded application of in situ replacement for prosthetic graft infection. J. Vasc. Surg. 2001, 34, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dua, A.; Lee, C.J. Epidemiology of peripheral arterial disease and critical limb ischemia. Tech. Vasc. Interv. Radiol. 2016, 19, 91–95. [Google Scholar] [CrossRef]
- Eiberg, J.P.; Røder, O.; Stahl-Madsen, M.; Eldrup, N.; Qvarfordt, P.; Laursen, A.; Greve, M.; Flörenes, T.; Nielsen, O.M.; Seidelin, C.; et al. Fluoropolymer-coated dacron versus PTFE grafts for femorofemoral crossover bypass: Randomised trial. Eur. J. Vasc. Endovasc. Surg. 2006, 32, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Exton, R.J.; Galland, R.B. Major groin complications following the use of synthetic grafts. Eur. J. Vasc. Endovasc. Surg. 2007, 34, 188–190. [Google Scholar] [CrossRef] [Green Version]
- Saleem, B.R.; Meerwaldt, R.; Tielliu, I.F.; Verhoeven, E.L.; van den Dungen, J.J.; Zeebregts, C.J. Conservative treatment of vascular prosthetic graft infection is associated with high mortality. Am. J. Surg. 2010, 200, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Siracuse, J.J.; Nandivada, P.; Giles, K.A.; Hamdan, A.D.; Wyers, M.C.; Chaikof, E.L.; Pomposelli, F.B.; Schermerhorn, M.L. Prosthetic graft infections involving the femoral artery. J. Vasc. Surg. 2013, 57, 700–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehsan, O.; Gibbons, C.P. A 10-year experience of using femoro-popliteal vein for re-vascularisation in graft and arterial infections. Eur. J. Vasc. Endovasc. Surg. 2009, 38, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Töpel, I.; Audebert, F.; Betz, T.; Steinbauer, M.G. Microbial spectrum and primary resistance to rifampicin in infectious complications in vascular surgery: Limits to the use of rifampicin-bonded prosthetic grafts. Angiology 2010, 61, 423–426. [Google Scholar] [CrossRef]
- Hasse, B.; Husmann, L.; Zinkernagel, A.; Weber, R.; Lachat, M.; Mayer, D. Vascular graft infections. Swiss Med. Wkly. 2013, 143, w13754. [Google Scholar] [CrossRef] [Green Version]
- Calligaro, K.D.; Veith, F.J.; Yuan, J.G.; Gargiulo, N.J.; Dougherty, M.J. Intra-abdominal aortic graft infection: Complete or partial graft preservation in patients at very high risk. J. Vasc. Surg. 2003, 38, 1199–1204. [Google Scholar] [CrossRef] [Green Version]
- Young, M.H.; Upchurch, G.R.; Malani, P.N. Vascular graft infections. Infect. Dis. Clin. 2012, 26, 41–56. [Google Scholar] [CrossRef]
- Bandyk, D.F.; Novotney, M.L.; Johnson, B.L.; Back, M.R.; Roth, S.R. Use of rifampin-soaked gelatin-sealed polyester grafts for in situ treatment of primary aortic and vascular prosthetic infections. J. Surg. Res. 2001, 95, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Lew, W.; Moore, W. Antibiotic-impregnated grafts for aortic reconstruction. Semin. Vasc. Surg. 2011, 24, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Morishima, M.; Marui, A.; Yanagi, S.; Nomura, T.; Nakajima, N.; Hyon, S.H.; Ikeda, T.; Sakata, R. Sustained release of vancomycin from a new biodegradable glue to prevent methicillin-resistant Staphylococcus aureus graft infection. Interact. Cardiovasc. Thorac. Surg. 2010, 11, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Goëau-Brissonnière, O.; Mercier, F.; Nicolas, M.H.; Bacourt, F.; Coggia, M.; Lebrault, C.; Pechère, J.C. Treatment of vascular graft infection by in situ replacement with a rifampin-bonded gelatin-sealed Dacron graft. J. Vasc. Surg. 1994, 19, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Colburn, M.D.; Moore, W.S.; Chvapil, M.; Gelabert, H.A.; Quioñones-Baldrich, W.J. Use of an antibiotic-bonded graft for in situ reconstruction after prosthetic graft infections. J. Vasc. Surg. 1992, 16, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Chervu, A.; Moore, W.S.; Chvapil, M.; Henderson, T. Efficacy and duration of antistaphylococcal activity comparing three antibiotics bonded to Dacron vascular grafts with a collagen release system. J. Vasc. Surg. 1991, 13, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Almeida, C.E.P.C.; Reis, L.; Carvalho, L.; Almeida, C.M.C. Collagen implant with gentamicin sulphate reduces surgical site infection in vascular surgery: A prospective cohort study. Int. J. Surg. 2014, 12, 1100–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. Available online: https://pubmed.ncbi.nlm.nih.gov/9880479/ (accessed on 15 June 2021). [CrossRef] [PubMed] [Green Version]
- Ricco, J.-B.; Assadian, O. Antimicrobial silver grafts for prevention and treatment of vascular graft infection. Semin. Vasc. Surg. 2011, 24, 234–241. [Google Scholar] [CrossRef]
- Hernandez-Richter, T.; Schardey, H.M.; Wittmann, F.; Mayr, S.; Schmitt-Sody, M.; Blasenbreu, S.; Heiss, M.M.; Gabka, C.; Angele, M.K. Rifampin and Triclosan but not silver is effective in preventing bacterial infection of vascular dacron graft material. Eur. J. Vasc. Endovasc. Surg. 2003, 26, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Berard, X.; Stecken, L.; Pinaquy, J.B.; Cazanave, C.; Puges, M.; Pereyre, S.; Bordenave, L.; M’Zali, F. Comparison of the antimicrobial properties of silver impregnated vascular grafts with and without triclosan. Eur. J. Vasc. Endovasc. Surg. 2016, 51, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Fujita, M.; Kinoshita, M.; Ishihara, M.; Kanatani, Y.; Morimoto, Y.; Simizu, M.; Ishizuka, T.; Saito, Y.; Yura, H.; Matsui, T.; et al. Inhibition of vascular prosthetic graft infection using a photocrosslinkable chitosan hydrogel. J. Surg. Res. 2004, 121, 135–140. [Google Scholar] [CrossRef]
- Bondar, B.; Fuchs, S.; Motta, A.; Migliaresi, C.; Kirkpatrick, C.J. Functionality of endothelial cells on silk fibroin nets: Comparative study of micro-and nanometric fibre size. Biomaterials 2008, 29, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Yoo, J.J.; Lim, G.J.; Atala, A.; Stitzel, J. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2007, 83, 999–1008. [Google Scholar] [CrossRef]
- He, W.; Yong, T.; Teo, W.E.; Ma, Z.; Ramakrishna, S. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: Potential vascular graft for blood vessel tissue engineering. Tissue Eng. 2005, 11, 1574–1588. [Google Scholar] [CrossRef] [PubMed]
- Goëau-Brissonnière, O.A.; Fabre, D.; Leflon-Guibout, V.; Di Centa, I.; Nicolas-Chanoine, M.H.; Coggia, M. Comparison of the resistance to infection of rifampin-bonded gelatin-sealed and silver/collagen-coated polyester prostheses. J. Vasc. Surg. 2002, 35, 1260–1263. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, J.; Ramakrishna, S. Applications of polymer nanofibers in biomedicine and biotechnology. Appl. Biochem. Biotechnol. 2005, 125, 147–157. [Google Scholar] [CrossRef]
- Alsberg, E.; Feinstein, E.; Joy, M.P.; Prentiss, M.; Ingber, D.E. Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng. 2006, 12, 3247–3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, L.S.; Bhattacharyya, S.; Bender, J.D.; Greish, Y.E.; Brown, P.W.; Allcock, H.R.; Laurencin, C.T. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules 2004, 5, 2212–2220. [Google Scholar] [CrossRef]
- Pandolfi, L.; Furman, N.T.; Wang, X.; Lupo, C.; Martinez, J.O.; Mohamed, M.; Taraballi, F.; Tasciotti, E. A nanofibrous electrospun patch to maintain human mesenchymal cell stemness. J. Mater. Sci. Mater. Med. 2017, 28, 44. [Google Scholar] [CrossRef]
- Blecher, K.; Nasir, A.; Friedman, A. The growing role of nanotechnology in combating infectious disease. Virulence 2011, 2, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Brossollet, L.J. Mechanical issues in vascular grafting: A review. Int. J. Artif. Organs 1992, 15, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Katsimpoulas, M.; Morticelli, L.; Gontika, I.; Kouvaka, A.; Mallis, P.; Dipresa, D.; Böer, U.; Soudah, B.; Haverich, A.; Michalopoulos, E.; et al. Biocompatibility and immunogenicity of decellularized allogeneic aorta in the orthotopic rat model. Tissue Eng. Part A 2019, 25, 399–415. [Google Scholar] [CrossRef]
- Lesèche, G.; Castier, Y.; Petit, M.D.; Bertrand, P.; Kitzis, M.; Mussot, S.; Besnard, M.; Cerceau, O. Long-term results of cryopreserved arterial allograft reconstruction in infected prosthetic grafts and mycotic aneurysms of the abdominal aorta. J. Vasc. Surg. 2001, 34, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibino, N.; Mejias, D.; Pietris, N.; Dean, E.; Yi, T.; Best, C.; Shinoka, T.; Breuer, C. The innate immune system contributes to tissue-engineered vascular graft performance. FASEB J. 2015, 29, 2431–2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibino, N.; McGillicuddy, E.; Matsumura, G.; Ichihara, Y.; Naito, Y.; Breuer, C.; Shinoka, T. Late-term results of tissue-engineered vascular grafts in humans. J. Thorac. Cardiovasc. Surg. 2010, 139, 431–436.e2. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. [Google Scholar] [CrossRef]
- Gunn, J.; Zhang, M. Polyblend nanofibers for biomedical applications: Perspectives and challenges. Trends Biotechnol. 2010, 28, 189–197. [Google Scholar] [CrossRef]
- Liu, H.; Ding, X.; Zhou, G.; Li, P.; Wei, X.; Fan, Y. Electrospinning of nanofibers for tissue engineering applications. J. Nanomater. 2013, 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, Y.; John, K.; Shoji, T.; Shinoka, T. The evolution of tissue engineered vascular graft technologies: From preclinical trials to advancing patient care. Appl. Sci. 2019, 9, 1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miroshnichenko, S.; Timofeeva, V.; Permyakova, E.; Ershov, S.; Kiryukhantsev-Korneev, P.; Dvořaková, E.; Shtansky, D.V.; Zajíčková, L.; Solovieva, A.; Manakhov, A. Plasma-coated polycaprolactone nanofibers with covalently bonded platelet-rich plasma enhance adhesion and growth of human fibroblasts. Nanomaterials 2019, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- Sirc, J.; Kubinova, S.; Hobzova, R.; Stranska, D.; Kozlik, P.; Bosakova, Z.; Marekova, D.; Holan, V.; Sykova, E.; Michalek, J. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. Int. J. Nanomed. 2012, 7, 5315. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.S.; Lee, C.H.; Wang, Y.C.; Liu, S.J. Sustained release of vancomycin from novel biodegradable nanofiber-loaded vascular prosthetic grafts: In vitro and in vivo study. Int. J. Nanomed. 2015, 10, 885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhou, P.; Zhou, F.; Zhao, Y.; Ren, L.; Yuan, X. Antimicrobial eugenol-loaded electrospun membranes of poly (ε-caprolactone)/gelatin incorporated with REDV for vascular graft applications. Colloids Surf. B Biointerfaces 2018, 162, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Eren Boncu, T.; Ozdemir, N.; Uskudar Guclu, A. Electrospinning of linezolid loaded PLGA nanofibers: Effect of solvents on its spinnability, drug delivery, mechanical properties, and antibacterial activities. Drug Dev. Ind. Pharm. 2020, 46, 109–121. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; El Fawal, G.F.; El-Deeb, N.M.; Hassan, H.S.; Mo, X. Electrospun Polyvinyl Alcohol/Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Appl. Biochem. Biotechnol. 2016, 178, 1488–1502. Available online: https://pubmed.ncbi.nlm.nih.gov/26686499/ (accessed on 15 June 2021). [CrossRef] [PubMed]
- Davoudi, P.; Assadpour, S.; Derakhshan, M.A.; Ai, J.; Solouk, A.; Ghanbari, H. Biomimetic modification of polyurethane-based nanofibrous vascular grafts: A promising approach towards stable endothelial lining. Mater. Sci. Eng. C 2017, 80, 213–221. [Google Scholar] [CrossRef]
- Montini-Ballarin, F.; Calvo, D.; Caracciolo, P.C.; Rojo, F.; Frontini, P.M.; Abraham, G.A.; Guinea, G.V. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts. J. Mech. Behav. Biomed. Mater. 2016, 60, 220–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.; Yoon, H.; Park, Y. Drug release from various thicknesses of layered mats consisting of electrospun polycaprolactone and polyethylene oxide micro/nanofibers. Appl. Phys. A 2010, 100, 1197–1204. [Google Scholar] [CrossRef]
- Uykun, N.; Ergal, İ.; Kurt, H.; Gökçeören, A.T.; Göcek, İ.; Kayaoğlu, B.K.; Akarsubaşı, A.T.; Sarac, A.S. Electrospun antibacterial nanofibrous polyvinylpyrrolidone/cetyltrimethylammonium bromide membranes for biomedical applications. J. Bioact. Compat. Polym. 2014, 29, 382–397. [Google Scholar] [CrossRef]
- Schneider, F.; O’Connor, S.; Becquemin, J.P. Efficacy of collagen silver-coated polyester and rifampin-soaked vascular grafts to resist infection from MRSA and Escherichia coli in a dog model. Ann. Vasc. Surg. 2008, 22, 815–821. [Google Scholar] [CrossRef]
- Taraballi, F.; Sushnitha, M.; Tsao, C.; Bauza, G.; Liverani, C.; Shi, A.; Tasciotti, E. Biomimetic tissue engineering: Tuning the immune and inflammatory response to implantable biomaterials. Adv. Healthc. Mater. 2018, 7, 1800490. [Google Scholar] [CrossRef] [PubMed]
- de Valence, S.; Tille, J.C.; Mugnai, D.; Mrowczynski, W.; Gurny, R.; Möller, M.; Walpoth, B.H. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 2012, 33, 38–47. [Google Scholar] [CrossRef]
- Tillman, B.W.; Yazdani, S.K.; Lee, S.J.; Geary, R.L.; Atala, A.; Yoo, J.J. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomatrials 2009, 30, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.; AlSalhi, M.S.; Siddiqui, M.K.J. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848. [Google Scholar] [CrossRef]
- Guo, D.; Xie, G.; Luo, J. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D Appl. Phys. 2013, 47, 013001. [Google Scholar] [CrossRef] [Green Version]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef] [Green Version]
- Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019, 23, 20. [Google Scholar] [CrossRef]
- Barenholz, Y.C. Doxil®—the first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.A.; Deitcher, S.R. Marqibo®(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 2013, 71, 555–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Syed, A.F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2010, 2, 544–568. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, S.S.N.; Gunasekara, T.D.C.P.; Holton, J. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan J. Infect. Dis. 2018, 8, 2–11. [Google Scholar] [CrossRef]
- Panayala, N.R.; Pena-Mendez, M.E.; Havel, J. Havel, Silver or silver nanoparticles. J. Appl. Biomed. 2008, 6, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Madhavan, R.V.; Rosemary, M.J.; Nandkumar, M.A.; Krishnan, K.V.; Krishnan, L.K. Silver nanoparticle impregnated poly (ɛ-Caprolactone) scaffolds: Optimization of antimicrobial and noncytotoxic concentrations. Tissue Eng. Part A 2011, 17, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, J.; Boudreau, M.; Meng, J.; Yin, J.J.; Liu, J.; Xu, H. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Part. Fibre Toxicol. 2015, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mocan, T.J.B. Hemolysis as expression of nanoparticles-induced cytotoxicity in red blood cells. BMBN 2013, 1, 7–12. [Google Scholar]
- de la Harpe, K.M.; Kondiah, P.P.; Choonara, Y.E.; Marimuthu, T.; du Toit, L.C.; Pillay, V. The hemocompatibility of nanoparticles: A review of cell–nanoparticle interactions and hemostasis. Cells 2019, 8, 1209. [Google Scholar] [CrossRef] [Green Version]
- Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ritz, S.; Schöttler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J.; Landfester, K.; Schild, H.; Jahn, O.; Tenzer, S.; et al. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules 2015, 16, 1311–1321. [Google Scholar] [CrossRef]
- Sun, J.; Wang, S.; Zhao, D.; Hun, F.H.; Weng, L.; Liu, H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biol. Toxicol. 2011, 27, 333–342. [Google Scholar] [CrossRef]
- Liang, S.; Sun, K.; Wang, Y.; Dong, S.; Wang, C.; Liu, L.; Wu, Y. Role of Cyt-C/caspases-9, 3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid. Chem.-Biol. Interact. 2016, 258, 40–51. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Mo, H.; Zhang, J.; Jiang, X.; Zhang, L.; Yang, L.; Fu, L.; He, L.; Zhao, Y.; et al. Sodium triphosphate–capped silver nanoparticles on a decellularized scaffold-based polyurethane vascular patch for bacterial infection inhibition and rapid endothelialization. J. Bioact. Compat. Polym. 2019, 34, 357–372. [Google Scholar] [CrossRef]
- Chudobova, D.; Nejdl, L.; Gumulec, J.; Krystofova, O.; Rodrigo, M.A.M.; Kynicky, J.; Ruttkay-Nedecky, B.; Kopel, P.; Babula, P.; Adam, V.; et al. Complexes of silver (I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. Int. J. Mol. Sci. 2013, 14, 13592–13614. [Google Scholar] [CrossRef] [Green Version]
- Blanchemain, N.; Laurent, T.; Chai, F.; Neut, C.; Haulon, S.; Krump-konvalinkova, V.; Morcellet, M.; Martel, B.; Kirkpatrick, C.J.; Hildebrand, H.F. Polyester vascular prostheses coated with a cyclodextrin polymer and activated with antibiotics: Cytotoxicity and microbiological evaluation. Acta Biomater. 2008, 4, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Jean-Baptiste, E.; Blanchemain, N.; Neut, C.; Chai, F.; Maton, M.; Martel, B.; Hildebrand, H.; Haulon, S. Evaluation of the anti-infectious properties of polyester vascular prostheses functionalised with cyclodextrin. J. Infect. 2014, 68, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Thukkaram, M.; Sitaram, S.; Subbiahdoss, G. Antibacterial efficacy of iron-oxide nanoparticles against biofilms on different biomaterial surfaces. Int. J. Biomater. 2014, 2014, 716080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, M.; Lee, J.H.; Lee, J. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold–silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. J. Biomater. Appl. 2016, 31, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.C.; Deokar, A.R.; Liao, J.H.; Shih, P.Y.; Ling, Y.C. Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 2013, 7, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Cheow, W.S.; Chang, M.W.; Hadinoto, K. Antibacterial efficacy of inhalable antibiotic-encapsulated biodegradable polymeric nanoparticles against E. coli biofilm cells. J. Biomed. Nanotechnol. 2010, 6, 391–403. [Google Scholar] [CrossRef]
- Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 2009, 30, 2782–2789. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Schoenfisch, M.H. Inorganic/organic hybrid silica nanoparticles as a nitric oxide delivery scaffold. Chem. Mater. 2008, 20, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Moure, J.S.; Van Eps, J.L.; Scherba, J.C.; Haddix, S.; Livingston, M.; Bryan, N.S.; Cantu, C.; Valson, C.; Taraballi, F.; Kaplan, L.J.; et al. Polyester mesh functionalization with nitric oxide-releasing silica nanoparticles reduces early methicillin-resistant staphylococcus aureus contamination. Surg. Infect. 2021, 2014, 716080. [Google Scholar] [CrossRef]
- Forier, K.; Raemdonck, K.; De Smedt, S.C.; Demeester, J.; Coenye, T.; Braeckmans, K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Release 2014, 190, 607–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulac, C.; Clement-Major, S.; Hawari, J.; Lagace, J. Eradication of mucoid Pseudomonas aeruginosa with fluid liposome-encapsulated tobramycin in an animal model of chronic pulmonary infection. Antimicrob. Agents Chemother. 1996, 40, 665–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melchiorri, A.J.; Hibino, N.; Best, C.A.; Yi, T.; Lee, Y.U.; Kraynak, C.A.; Kimerer, L.K.; Krieger, A.; Kim, P.; Breuer, C.K.; et al. 3D-printed biodegradable polymeric vascular grafts. Adv. Healthc. Mater. 2016, 5, 319–325. [Google Scholar] [CrossRef]
- Kačarević, Ž.P.; Rider, P.M.; Alkildani, S.; Retnasingh, S.; Smeets, R.; Jung, O.; Ivanišević, Z.; Barbeck, M. An introduction to 3D bioprinting: Possibilities, challenges and future aspects. Materials 2018, 11, 2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017, 35, 217–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melchiorri, A.J.; Fisher, J.P. Bioprinting of blood vessels. In Essentials of 3D Biofabrication and Translation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 337–350. [Google Scholar]
- Pashneh-Tala, S.; MacNeil, S.; Claeyssens, F. The tissue-engineered vascular graft—Past, present, and future. Tissue Eng. Part B Rev. 2016, 22, 68–100. [Google Scholar] [CrossRef]
Material | Antibiotic or Antiseptic | Test | Cytotoxicity | Organism | Efficacy | Reference |
---|---|---|---|---|---|---|
Poly(d,l)-lactide-co-glycolide (PLGA) | Vancomycin | In vitro and in vivo release characteristics | N/A | N/A | MIC90 maintained for over 30 days | [70] |
Poly(d,l)-lactide-co-glycolide (PLGA) | Linezolid | In vitro zone of inhibition | N/A | MRSA | Zone of inhibition: 42 (±1.5) mm at start 23 (±0.8) mm after 16 days | [72] |
Poly(-caprolactone) (PCL)/gelatin | Eugenol | In vitro growth inhibition | No | E. coli S. aureus | Growth Inhibition rate: 71.6 ± 3.3% against E. coli 78.6 ± 2.5% against S. aureus | [71] |
Poly-ε-caprolactone/collagen | Vancomycin/Gentamicin | In vitro zone of inhibition | No | S. Aureus S. epidermidis | Zone of Inhibition after first day: S. aureus 14.5 ± 0.48 mm S. epidermidis 20.5 ± 0.5 mm. | [2] |
Polyvinyl alcohol, Pluronic F127, and polyethyleneimine (PVA-Plur-PEI) | TiO2 NPs | In vitro growth inhibition | No | P. aeruginosa, S. typhi, E. coli | 44.7% S. typhi and 21.6% P. aeruginosa | [73] |
Polyvinylpyrrolidone (PVP) | Cetyltrimethyl- ammonium-bromide | In vitro plate count (measured in CFU/mL) | No | S. aureus, E. coli, K. pneumonia | −5 reduction in bacterial activity of control (log scale) for all bacterial species | [77] |
Category | Material | Antibiotic or Antiseptic | Test | Cytotoxicity | Organism | Efficacy | Reference |
---|---|---|---|---|---|---|---|
Polymer grafts with metal nanoparticles | Poly ε-caprolactone | Silver nanoparticles | In vitro | No | E. coli | + | [92] |
S. aureus | + | ||||||
Polyurethane film | Sodium triphosphate- capped silvernanoparticles | In vitro | No | E. coli | + | [101] | |
Polyurethane film | Silver nanoparticles | In vitro | Yes | E. coli | + | ||
Antisepticpolymer grafts with metal nanoparticles | Chitosan | Silver nanoparticles | In vitro | N/A | S. aureus | + | [102] |
Chitosan | Silver phosphate nanoparticles | In vitro | N/A | S. aureus | + | ||
Hyaluronic acid | Silver nanoparticles | In vitro | N/A | S. aureus | + | ||
Hyaluronic acid | Silver phosphate nanoparticles | In vitro | N/A | S. aureus | + | ||
Polymer grafts with cyclodextrin | Polyester and cyclodextrin | Rifampin | In vivo | N/A | S. aureus | + | [103] |
S. epidermidis | + | ||||||
MRSA | + | ||||||
E. coli | - | ||||||
En. cloacae | - | ||||||
P. aeruginosa | - | ||||||
In vitro | Yes | S. aureus | - | [104] | |||
E. coli | - | ||||||
Vancomycin | In vivo | N/A | S. aureus | + | [100] | ||
S. epidermidis | + | ||||||
MRSA | + | ||||||
In vitro | No | S. aureus | - | [103] | |||
Enterococcus | - | ||||||
Ciprofloxacin | In vivo | N/A | E. coli | + | [104] | ||
En. cloacae | + | ||||||
P. aeruginosa | + | ||||||
In vitro | Yes | S. aureus | + | [103] | |||
E. coli | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, E.; Serpelloni, S.; Alvear, P.; Rahimi, M.; Taraballi, F. Vascular Graft Infections: An Overview of Novel Treatments Using Nanoparticles and Nanofibers. Fibers 2022, 10, 12. https://doi.org/10.3390/fib10020012
He E, Serpelloni S, Alvear P, Rahimi M, Taraballi F. Vascular Graft Infections: An Overview of Novel Treatments Using Nanoparticles and Nanofibers. Fibers. 2022; 10(2):12. https://doi.org/10.3390/fib10020012
Chicago/Turabian StyleHe, Emma, Stefano Serpelloni, Phillip Alvear, Maham Rahimi, and Francesca Taraballi. 2022. "Vascular Graft Infections: An Overview of Novel Treatments Using Nanoparticles and Nanofibers" Fibers 10, no. 2: 12. https://doi.org/10.3390/fib10020012