Design of Scorodite@Fe3O4 Core–Shell Materials and the Fe3O4 Shell Prevents Leaching of Arsenic from Scorodite in Neutral and Alkaline Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Scorodite Synthesis
2.3. Scorodite@Fe3O4 Synthesis
2.4. Characterization
2.5. Stability Evaluation of Products
3. Results and Discussion
3.1. Characterization of the Scorodite
3.2. Characterization of Scorodite@Fe3O4
3.3. Morphology of Scorodite@Fe3O4
3.4. EDS Mapping Analysis of Scorodite@Fe3O4
3.5. Stability Evaluation Analysis of Scorodite@Fe3O4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fakhri, Y.; Bjørklund, G.; Bandpei, A.M.; Chirumbolo, S.; Keramati, H.; Pouya, R.H.; Asadi, A.; Amanidaz, N.; Sarafraz, M.; Sheikhmohammad, A. Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: A systematic review and carcinogenic risk assessment. Food Chem. Toxicol. 2018, 113, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Khan, S.; Ibrahim, M.; Sun, T.-R.; Tang, J.-F.; Cotner, J.B.; Xu, Y.-Y. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. J. Hazard. Mater. 2018, 348, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Neff, J.M. Ecotoxicology of arsenic in the marine environment. Environ. Toxicol. Chem. 1997, 16, 917–927. [Google Scholar] [CrossRef]
- Bretzler, A.; Lalanne, F.; Nikiema, J.; Podgorski, J.; Pfenninger, N.; Berg, M.; Schirmer, M. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Sci. Total Environ. 2017, 584, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic Pollution: A Global Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 28. [Google Scholar]
- Vadahanambi, S.; Lee, S.-H.; Kim, W.-J.; Oh, I.-K. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ. Sci. Technol. 2013, 47, 10510–10517. [Google Scholar] [CrossRef] [PubMed]
- Leonard, R.L.; Whellock, J.G. Extraction or Recovery of Non-Ferrous Metal Values from Arsenic-Containing Materials. U.S. Patent 5,482,534A, 9 January 1996. [Google Scholar]
- Dudka, S.; Adriano, D.C. Environmental impacts of metal ore mining and processing: A review. J. Environ. Qual. 1997, 26, 590–602. [Google Scholar] [CrossRef]
- Agrawal, A.; Sahu, K.; Pandey, B. Solid waste management in non-ferrous industries in India. Resour. Conserv. Recycl. 2004, 42, 99–120. [Google Scholar] [CrossRef]
- Wei, C.; Jiang, Q.; Luo, T.; Huang, M. Arsenic removal and recovery in heavy metals smelting process. Min. Res. Dev. 2003, 2, 1. [Google Scholar]
- Mukherjee, A.B. Arsenic flows in the environment of the European Union: A synoptic review. Trace Met. Other Contam. Environ. 2007, 9, 527–547. [Google Scholar]
- Ferguson, J.F.; Gavis, J. A review of the arsenic cycle in natural waters. Water Res. 1972, 6, 1259–1274. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.B.; Guo, X.; Su, Y.B.; Wang, G. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J. Environ. Sci. 2006, 18, 1124–1134. [Google Scholar]
- Leist, M.; Casey, R.; Caridi, D. The management of arsenic wastes: Problems and prospects. J. Hazard. Mater. 2000, 76, 125–138. [Google Scholar] [CrossRef]
- Sullivan, C.; Tyrer, M.; Cheeseman, C.R.; Graham, N.J. Disposal of water treatment wastes containing arsenic—A review. Sci. Total Environ. 2010, 408, 1770–1778. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Li, J.; Xie, B.; Xu, Z. Recycling arsenic from gallium arsenide scraps through sulfurizing thermal treatment. ACS Sustain. Chem. Eng. 2017, 5, 3179–3185. [Google Scholar] [CrossRef]
- Bothe, J.V.; Brown, P.W. Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol. 1999, 33, 3806–3811. [Google Scholar] [CrossRef]
- Coussy, S.; Benzaazoua, M.; Blanc, D.; Moszkowicz, P.; Bussière, B. Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens. J. Environ. Manag. 2012, 93, 10–21. [Google Scholar] [CrossRef]
- Palfy, P.; Vircikova, E.; Molnar, L. Processing of arsenic waste by precipitation and solidification. Waste Manag. 1999, 19, 55–59. [Google Scholar] [CrossRef]
- Ahoranta, S.H.; Kokko, M.E.; Papirio, S.; Özkaya, B.; Puhakka, J.A. Arsenic removal from acidic solutions with biogenic ferric precipitates. J. Hazard. Mater. 2016, 306, 124–132. [Google Scholar] [CrossRef]
- Lim, K.; Shukor, M.; Wasoh, H. Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Res. Int. 2014, 2014, 503784. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, X. On the potential of biological treatment for arsenic contaminated soils and groundwater. J. Environ. Manag. 2009, 90, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Bluteau, M.-C.; Becze, L.; Demopoulos, G.P. The dissolution of scorodite in gypsum-saturated waters: Evidence of Ca–Fe–AsO4 mineral formation and its impact on arsenic retention. Hydrometallurgy 2009, 97, 221–227. [Google Scholar] [CrossRef]
- Nikolaidis, N.P.; Dobbs, G.M.; Lackovic, J.A. Arsenic removal by zero-valent iron: Field, laboratory and modeling studies. Water Res. 2003, 37, 1417–1425. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, Y.; Wu, X.; Wang, H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 2009, 172, 1591–1596. [Google Scholar] [CrossRef] [PubMed]
- Paktunc, D.; Bruggeman, K. Solubility of nanocrystalline scorodite and amorphous ferric arsenate: Implications for stabilization of arsenic in mine wastes. Appl. Geochem. 2010, 25, 674–683. [Google Scholar] [CrossRef]
- Fujita, T.; Fujieda, S.; Shinoda, K.; Suzuki, S. Environmental leaching characteristics of scorodite synthesized with Fe (II) ions. Hydrometallurgy 2012, 111, 87–102. [Google Scholar] [CrossRef]
- Le Berre, J.; Gauvin, R.; Demopoulos, G. A study of the crystallization kinetics of scorodite via the transformation of poorly crystalline ferric arsenate in weakly acidic solution. Colloids Surf. A Physicochem. Eng. Asp. 2008, 315, 117–129. [Google Scholar] [CrossRef]
- Mirzaei, A.; Janghorban, K.; Hashemi, B.; Bonavita, A.; Bonyani, M.; Leonardi, S.G.; Neri, G. Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials 2015, 5, 737–749. [Google Scholar] [CrossRef]
- Ke, P.-C.; Liu, Z.-H. Synthesis, in-situ coating and characterization of scorodite with high leaching stability. Trans. Nonferrous Met. Soc. China 2019, 29, 876–892. [Google Scholar] [CrossRef]
- Saif, S.; Tahir, A.; Chen, Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 2016, 6, 209. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Chen, D.; Deng, P.; Liang, J. Fabrication of amine-modified magnetite-electrochemically reduced graphene oxide nanocomposite modified glassy carbon electrode for sensitive dopamine determination. Nanomaterials 2018, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Jiang, X.; Kaneti, Y.V.; Yu, A. Design and construction of polymerized-glucose coated Fe3O4 magnetic nanoparticles for delivery of aspirin. Powder Technol. 2013, 236, 157–163. [Google Scholar] [CrossRef]
- Kendall, D.S. Toxicity characteristic leaching procedure and iron treatment of brass foundry waste. Environ. Sci. Technol. 2003, 37, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Baghurst, D.R.; Barrett, J.; Coleyshaw, E.E.; Griffith, W.P.; Mingos, D.M.P. Microwave techniques for the synthesis and deuteration of minerals, with particular reference to scorodite, FeAsO4.2H2O. Mineral. Mag. 1996, 60, 821–828. [Google Scholar] [CrossRef]
- Frau, F.; Addari, D.; Atzei, D.; Biddau, R.; Cidu, R.; Rossi, A. Influence of major anions on As (V) adsorption by synthetic 2-line ferrihydrite. Kinetic investigation and XPS study of the competitive effect of bicarbonate. Water Air Soil Pollut. 2010, 205, 25–41. [Google Scholar] [CrossRef]
- Coleyshaw, E.E.; Griffith, W.P.; Bowell, R.J. Fourier-transform Raman spectroscopy of minerals. Spectrochim. Acta Part A Mol. Spectrosc. 1994, 50, 1909–1918. [Google Scholar] [CrossRef]
- Fujita, T.; Taguchi, R.; Abumiya, M.; Matsumoto, M.; Shibata, E.; Nakamura, T. Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite. Hydrometallurgy 2009, 96, 189–198. [Google Scholar] [CrossRef]
- Das, S.; Hendry, M.J. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem. Geol. 2011, 290, 101–108. [Google Scholar] [CrossRef]
- Tong, G.; Wu, W.; Guan, J.; Qian, H.; Yuan, J.; Li, W. Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties. J. Alloy. Compd. 2011, 509, 4320–4326. [Google Scholar] [CrossRef]
- Hu, C.; Gao, Z.; Yang, X. Fabrication and magnetic properties of Fe3O4 octahedra. Chem. Phys. Lett. 2006, 429, 513–517. [Google Scholar] [CrossRef]
- Muraliganth, T.; Murugan, A.V.; Manthiram, A. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem. Commun. 2009, 47, 7360–7362. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Merkel, B. The dissolution and solubility of scorodite, FeAsO4 2H2O: Evaluation and simulation with PHREEQC2. Wiss. Mitt. Inst. Geol. Tech. Univ. Bergakad. Freib. 2001, 18, 72–87. [Google Scholar]
- Paktunc, D.; Dutrizac, J.; Gertsman, V. Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: Implications for arsenic mobility. Geochim. Cosmochim. Acta 2008, 72, 2649–2672. [Google Scholar] [CrossRef]
Elements | As | K | Al | Zn | Na |
---|---|---|---|---|---|
Dust (wt %) | 42.3 ± 1.0 | 0.6 ± 0.1 | 0.1 ± 0.0 | 0.5 ± 0.1 | 0.3 ± 0.1 |
Leach liquid (g·L–1) | 22.5 ± 2.2 | 0.6 ± 0.2 | 0.01 ± 0.0 | 0.01 ± 0.0 | 0.2 ± 0.1 |
Sample | Initial Fe Ions/Scorodite Molar Ratio (%) | Reaction Time (min) | Initial Reaction pH | Concentration of As (TCLP 1; mg·L−1) | Concentration of As (TCLP 2; mg·L−1) | Quality of Fe3O4 Shell (1–3 Stars) |
---|---|---|---|---|---|---|
Scorodite | – | – | – | 0.671 ± 0.012 | 3.754 ± 0.125 | – |
1 | 1 | 15 | 7 | 0 | 0.994 ± 0.009 | 2 |
2 | 5 | 15 | 7 | 0.004 ± 0.001 | 0.136 ± 0.011 | 2 |
3 | 9 | 15 | 7 | 0 | 0 | 3 |
4 | 1 | 15 | 8 | 0 | 0.955 ± 0.012 | 2 |
5 | 5 | 15 | 8 | 0 | 0.624 ± 0.010 | 2 |
6 | 9 | 15 | 8 | 0 | 0 | 3 |
7 | 9 | 25 | 7 | 0 | 0 | 3 |
8 | 9 | 35 | 7 | 0 | 0 | 3 |
9 | 9 | 25 | 8 | 0 | 0 | 3 |
10 | 9 | 35 | 8 | 0 | 0 | 3 |
11 | 9 | 15 | 9 | 0.354 ± 0.016 | 6.091 ± 0.172 | 1 |
12 | 9 | 15 | 10 | 0.967 ± 0.021 | 3.194 ± 0.046 | 2 |
13 | 9 | 25 | 10 | 0 | 1.873 ± 0.104 | 2 |
14 | 9 | 35 | 10 | 0 | 1.592 ± 0.120 | 2 |
15 | 9 | 15 | 11 | 1.258 ± 0.033 | 7.031 ± 0.163 | 1 |
16 | 9 | 15 | 12 | 5.174 ± 0.106 | 12.68 ± 0.118 | 1 |
17 | 1 | 15 | 9 | 0.549 ± 0.028 | 7.183 ± 0.049 | 1 |
18 | 5 | 15 | 9 | 0.487 ± 0.021 | 6.627 ± 0.094 | 1 |
19 | 9 | 25 | 9 | 0.138 ± 0.014 | 3.734 ± 0.043 | 2 |
20 | 9 | 35 | 9 | 0 | 0.982 ± 0.011 | 2 |
21 | 1 | 15 | 10 | 1.691 ± 0.026 | 8.735 ± 0.114 | 1 |
22 | 5 | 15 | 10 | 1.172 ± 0.035 | 5.549 ± 0.073 | 1 |
23 | 1 | 15 | 11 | 2.054 ± 0.013 | 9.723 ± 0.047 | 1 |
24 | 5 | 15 | 11 | 1.813 ± 0.091 | 7.871 ± 0.083 | 1 |
25 | 9 | 25 | 11 | 0.749 ± 0.010 | 4.312 ± 0.144 | 1 |
26 | 9 | 35 | 11 | 0.498 ± 0.033 | 3.165 ± 0.075 | 1 |
27 | 1 | 15 | 12 | 7.682 ± 0.072 | 15.36 ± 0.148 | 1 |
28 | 5 | 15 | 12 | 6.235 ± 0.084 | 13.44 ± 0.162 | 1 |
29 | 9 | 25 | 12 | 4.058 ± 0.103 | 11.78 ± 0.092 | 1 |
30 | 9 | 35 | 12 | 3.262 ± 0.062 | 10.24 ± 0.136 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Rong, Z.; Tang, X.; Cao, S. Design of Scorodite@Fe3O4 Core–Shell Materials and the Fe3O4 Shell Prevents Leaching of Arsenic from Scorodite in Neutral and Alkaline Environments. Coatings 2019, 9, 523. https://doi.org/10.3390/coatings9080523
Wang Y, Rong Z, Tang X, Cao S. Design of Scorodite@Fe3O4 Core–Shell Materials and the Fe3O4 Shell Prevents Leaching of Arsenic from Scorodite in Neutral and Alkaline Environments. Coatings. 2019; 9(8):523. https://doi.org/10.3390/coatings9080523
Chicago/Turabian StyleWang, Yang, Zhihao Rong, Xincun Tang, and Shan Cao. 2019. "Design of Scorodite@Fe3O4 Core–Shell Materials and the Fe3O4 Shell Prevents Leaching of Arsenic from Scorodite in Neutral and Alkaline Environments" Coatings 9, no. 8: 523. https://doi.org/10.3390/coatings9080523
APA StyleWang, Y., Rong, Z., Tang, X., & Cao, S. (2019). Design of Scorodite@Fe3O4 Core–Shell Materials and the Fe3O4 Shell Prevents Leaching of Arsenic from Scorodite in Neutral and Alkaline Environments. Coatings, 9(8), 523. https://doi.org/10.3390/coatings9080523