Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of Ceramic Samples
2.2. Laser Treatment
2.3. Characterization
2.3.1. Microstructure
2.3.2. Morphology and Composition
2.3.3. Surface Roughness
3. Results and Discussion
- Energy per pulse depends on the repetition rate; which is already in the model.
- In the set of conducted experiments, Δα and repetition number were interdependent in the different levels (i.e., in the cases where Δα was fixed as 20°, repetition number was always fixed as 20; and in all cases when Δα was fixed as 90°, repetition number was always fixed as 2.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- López-López, J.A.; Humphriss, R.L.; Beswick, A.D.; Thom, H.H.Z.; Hunt, L.P.; Burston, A.; Fawsitt, C.G.; Hollingworth, W.; Higgins, J.P.T.; Welton, N.J.; et al. Choice of implant combinations in total hip replacement: Systematic review and network meta-analysis. BMJ 2017, 359, 4651. [Google Scholar] [CrossRef] [PubMed]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Edwards, L.D.; Levin, S. Complications from total hip replacement with the use of acrylic cement. Health Serv. Rep. 1973, 88, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Latham, B.; Goswami, T. Effect of geometric parameters in the design of hip implants-paper IV. Mater. Des. 2004, 25, 715–722. [Google Scholar] [CrossRef]
- Sargeant, A.; Goswami, T. Hip implants: Paper V. Physiological effects. Mater. Des. 2006, 27, 287–307. [Google Scholar] [CrossRef]
- Kharmanda, G. Reliability analysis for cementless hip prosthesis using a new optimized formulation of yield stress against elasticity modulus relationship. Mater. Des. 2015, 65, 496–504. [Google Scholar] [CrossRef]
- Rahaman, M.N.; Yao, A.; Sonny Bal, B.; Garino, J.P.; Ries, N.D. Ceramics for prosthetic hip and knee joint replacement. J. Am. Ceram. Soc. 2007, 90, 1965–1988. [Google Scholar] [CrossRef]
- O’Leary, J.F.; Mallory, T.H.; Kraus, T.J.; Lombardi, A.V., Jr.; Lye, C.L. Mittelmeier ceramic total hip arthroplasty. A retrospective study. J. Arthroplast. 1988, 3, 87–96. [Google Scholar] [CrossRef]
- Griss, P.; Claus, A.; Scheller, G. Analyse Unserer Erfahrungen Mit Keramik/Keramik-Huftendoprothesen der Ersten Generation. In Reliability and Long-Term Results of Ceramics in Orthopaedics; Sedel, L., Willmann, G., Eds.; Thieme: Stuttgart, Germany, 1999; pp. 43–47. [Google Scholar]
- Gierse, H.; Maaz, B.; Hofer, C.; Gruner, S. The ceramic cup type Lindenhof. Results 10–14 years after implantation. Arch. Orthop. Trauma Surg. 1996, 115, 167–170. [Google Scholar] [CrossRef]
- Garcia-Cimbrelo, E.; Martinez-Sayanes, J.M.; Minuesa, A.; Munuera, L. Mittelmeier ceramic-ceramic prosthesis after 10 years. J. Arthroplast. 1996, 11, 773–778. [Google Scholar] [CrossRef]
- Rosner, B.I.; Postak, P.D.; Greenwald, A.S. Cup/liner conformity of modular acetabular designs. Orthop. Trans. 1995, 19, 469–470. [Google Scholar]
- Schreiner, U.; Schulze, A.; Scheller, G.; Apruzzese, C.; Schwarz, M.L. Osseointegration of ceramic cement-free acetabular cups. Z. Orthop. Unfallchir. 2011, 150, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Forgon, M.; Mammel, E.; Trombitas, K.; Kacsalova, L.; Draveczki, I. Morphological investigations of a porous aluminium oxide ceramic and the consequences for clinical application. Arch. Orthop. Trauma Surg. 1987, 106, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Cornell, N.C.; Lane, J.M. Current understanding of osteoconduction in bone regeneration. Clin. Orthop. 1998, 355, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Spriano, S.; Yamaguchi, S.; Baino, F.; Ferraris, S. A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018, 79, 1–22. [Google Scholar] [CrossRef]
- Baino, F.; Minguella, J.; Kirk, N.; Montealegre, M.A.; Fiaschi, C.; Korkusuz, F.; Orlygsson, G.; Vitale-Brovarone, C. Novel full-ceramic monoblock acetabular cup with a bioactive trabecular coating: Design, fabrication and characterization. Ceram. Int. 2016, 42, 6833–6845. [Google Scholar] [CrossRef]
- Baino, F.; Vitale-Brovarone, C. Trabecular coating on curved alumina substrates using a novel bioactive and strong glass-ceramic. Biomed. Glasses 2015, 1, 31–40. [Google Scholar] [CrossRef]
- Baino, F.; Tallia, F.; Novajra, G.; Minguella-Canela, J.; Montealegre, M.; Korkusuz, F.; Vitale-Brovarone, C. Novel Bone-Like Porous Glass Coatings on Al2O3 Prosthetic Substrates. Key Eng. Mater. 2014, 631, 236–240. [Google Scholar] [CrossRef]
- Baino, F.; Montealegre, M.A.; Orlygsson, G.; Novajra, G.; Vitale-Brovarone, C. Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: A proof-of-concept study. J. Mater. Sci. 2017, 52, 9115–9128. [Google Scholar] [CrossRef]
- Baino, F.; Minguella-Canela, J.; Korkusuz, F.; Korkusuz, P.; Kankılıç, B.; Montealegre, M.A.; De los Santos-López, M.A.; Vitale-Brovarone, C. In vitro assessment of bioactive glass coatings on alumina/zirconia composite implants for potential use in prosthetic application. Int. J. Mol. Sci. 2019, 20, 722–737. [Google Scholar] [CrossRef]
- Comesaña, R.; Lusquiños, F.; Del Val, J.; Malot, T.; López-Álvarez, M.; Riveiro, A.; Quintero, F.; Boutinguiza, M.; Aubry, P.; De Carlos, A.; et al. Calcium phosphate grafts produced by rapid prototyping based on laser cladding. J. Eur. Ceram. Soc. 2011, 31, 29–41. [Google Scholar] [CrossRef]
- Comesaña, R.; Lusquiños, F.; Del Val, J.; López-Álvarez, M.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; De Carlos, A.; Jones, J.R.; Hill, R.G.; et al. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO2 laser cladding. Acta Biomater. 2011, 7, 3476–3487. [Google Scholar] [CrossRef] [PubMed]
- Del Val, J.; López-Cancelos, R.; Riveiro, A.; Badaoui, A.; Lusquiños, F.; Quintero, F.; Comesaña, R.; Boutinguiza, M.; Pou, J. On the fabrication of bioactive glass implants for bone regeneration by laser assisted rapid prototyping based on laser cladding. Ceram. Int. 2016, 42, 2021–2035. [Google Scholar] [CrossRef]
- Lusquiños, F.; Pou, J.; Boutinguiza, M.; Quintero, F.; Soto, R.; León, B.; Pérez-Amor, M. Main characteristics of calcium phosphate coatings obtained by laser cladding. Appl. Surf. Sci. 2005, 247, 486–492. [Google Scholar] [CrossRef]
- Comesaña, R.; Quintero, F.; Lusquiños, F.; Pascual, M.J.; Boutinguiza, M.; Durán, A.; Pou, J. Laser cladding of bioactive glass coatings. Acta Biomater. 2010, 6, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Minguella-Canela, J.; Villegas, M.; Poll, B.; Tena, G.; Ginebra, M.P. Automatic casting of advanced technical ceramic parts via open source high resolution 3D printing machines. Key Eng. Mater. 2014, 631, 269–274. [Google Scholar] [CrossRef]
- Ayats, J.R.G.; Canela, J.M. Development of a methodology for the materialisation of ceramic rapid prototypes based on substractive methods. Arch. Mater. Sci. 2007, 28, 9–14. [Google Scholar]
- Minguella-Canela, J.; Cuiñas, D.; Rodríguez, J.V.; Vivancos, J. Advanced manufacturing of ceramics for biomedical applications: Subjection methods for biocompatible materials. Procedia Eng. 2013, 63, 218–224. [Google Scholar] [CrossRef]
- Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture; ISO 4288; International Organization for Standardization: Geneva, Switzerland, 1996.
- Orera, V.M.; Merino, R.I.; Chen, Y.; Cases, R.; Alonso, P.J. Intrinsic electron and hole defects in stabilized zirconia single crystals. Phys. Rev. B 1990, 42, 9782–9789. [Google Scholar] [CrossRef]
- Orera, V.M.; Merino, R.I.; Chen, Y.; Cases, R.; Alonso, P.J. Electron and hole trapped defects produced by thermo-reduction or irradiation in stabilized zirconia. Radiat. Eff. Defects. Solids 1991, 119, 907–912. [Google Scholar] [CrossRef]
- Baino, F.; Gautier di Confiengo, G.; Faga, M.G. Fabrication and morphological characterization of glass-ceramic orbital implants. Int. J. Appl. Ceram. Technol. 2018, 15, 884–891. [Google Scholar] [CrossRef]
- Semaltianos, N.G. Nanoparticles by laser ablation. Crit. Rev. Solid State Mater. Sci. 2010, 35, 105–124. [Google Scholar] [CrossRef]
- Kim, M.; Osone, S.; Kim, T.; Higashi, H.; Seto, T. Synthesis of nanoparticles by laser ablation: A review. KONA Powder Part. J. 2017, 34, 80–90. [Google Scholar] [CrossRef]
- Reznikov, N.; Shahar, R.; Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815–3826. [Google Scholar] [CrossRef] [PubMed]
- Feller, L.; Jadwat, Y.; Khammissa, R.A.G.; Meyerov, R.; Schechter, I.; Lemmer, J. Cellular responses evoked by different surface characteristics of intraosseous Ti implants. BioMed Res. Int. 2015, 2015, 171945. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, Z.; Boyan, B.D. Underlying mechanisms at the bone-biomaterial interface. J. Cell. Biochem. 1994, 56, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Rausch-Fan, X.; Wieland, M.; Matejka, M.; Schedle, A. The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J. Biomed. Mater. Res. A 2007, 82, 658–668. [Google Scholar] [CrossRef]
- Anselme, K.; Davidson, P.; Popa, A.M.; Giazzon, M.; Liley, M.; Ploux, L. The interactions of cells and bacteria with surfaces structured at the nanometer scale. Acta Biomater. 2010, 6, 3824–12846. [Google Scholar] [CrossRef]
Sample Identity | Energy per Pulse (µJ) | Repetition Rate (kHz) | Scanning Speed (mm/s) | Δα (°) | Repetition Number | Cycles |
---|---|---|---|---|---|---|
1a | 240 | 60 | 1000 | 20 | 20 | 1 |
2a | 240 | 60 | 1000 | 20 | 20 | 5 |
1b | 240 | 60 | 300 | 20 | 20 | 1 |
2b | 240 | 60 | 300 | 20 | 20 | 5 |
1c | 240 | 20 | 1000 | 20 | 20 | 1 |
2c | 240 | 20 | 1000 | 20 | 20 | 5 |
1d | 240 | 20 | 300 | 20 | 20 | 1 |
2d | 240 | 20 | 300 | 20 | 20 | 5 |
3d | 555 | 20 | 300 | 20 | 20 | 1 |
4a | 240 | 60 | 300 | 90 | 2 | 1 |
4b | 240 | 60 | 300 | 90 | 2 | 2 |
4c | 240 | 60 | 300 | 90 | 2 | 3 |
4d | 240 | 60 | 300 | 90 | 2 | 4 |
5 | 240 | 60 | 300 | 90 | 2 | 10 |
Sample Identity | Ra (µm) | Rq (µm) |
---|---|---|
As-such ceramic | 0.26 ± 0.025 | 0.39 ± 0.038 |
1a | 4.48 ± 0.47 | 6.78 ± 0.62 |
2a | 7.25 ± 0.66 | 8.58 ± 1.00 |
1b | 11.08 ± 0.64 | 14.10 ± 0.55 |
2b | 31.03 ± 4.91 | 38.50 ± 5.88 |
1c | 3.38 ± 0.39 | 4.18 ± 0.39 |
2c | 7.75 ± 0.47 | 9.28 ± 0.67 |
1d | 3.45 ± 0.29 | 4.4 ± 0.36 |
2d | 5.48 ± 0.26 | 6.90 ± 0.26 |
3d | 8.78 ± 1.93 | 12.18 ± 3.30 |
4a | 3.78 ± 0.68 | 4.83 ± 0.76 |
4b | 6.55 ± 0.41 | 8.08 ± 0.46 |
4c | 8.55 ± 1.24 | 10.28 ± 1.51 |
4d | 9.78 ± 1.04 | 12.05 ± 0.99 |
5 | 18.84 ± 0.28 | 21.85 ± 0.26 |
5 after heat treatment | 18.66 ± 0.34 | 21.53 ± 0.37 |
DOE Experiment Id | A: Repetition Rate (kHz) | B: Scanning Speed (mm/s) | C: Δα (°) | D: Number of Cycles (units) |
---|---|---|---|---|
1 | 20 | 300 | 20 | 1 |
2 | 60 | 300 | 20 | 5 |
3 | 20 | 1000 | 20 | 5 |
4 | 60 | 1000 | 20 | 1 |
5 | 20 | 300 | 90 | 5 |
6 | 60 | 300 | 90 | 1 |
7 | 20 | 1000 | 90 | 1 |
8 | 60 | 1000 | 90 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baino, F.; Montealegre, M.A.; Minguella-Canela, J.; Vitale-Brovarone, C. Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis. Coatings 2019, 9, 369. https://doi.org/10.3390/coatings9060369
Baino F, Montealegre MA, Minguella-Canela J, Vitale-Brovarone C. Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis. Coatings. 2019; 9(6):369. https://doi.org/10.3390/coatings9060369
Chicago/Turabian StyleBaino, Francesco, Maria Angeles Montealegre, Joaquim Minguella-Canela, and Chiara Vitale-Brovarone. 2019. "Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis" Coatings 9, no. 6: 369. https://doi.org/10.3390/coatings9060369
APA StyleBaino, F., Montealegre, M. A., Minguella-Canela, J., & Vitale-Brovarone, C. (2019). Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis. Coatings, 9(6), 369. https://doi.org/10.3390/coatings9060369