Kinetically Deposited Copper Antimicrobial Surfaces
Abstract
1. Introduction
2. Materials and Methods
2.1. Antibacterial Surface Coating
2.2. Antiviral Surface Coating
2.3. Microbiological Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Page, K.; Wilson, M.; Parkin, I. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J. Mater. Chem. 2009, 19, 3819–3831. [Google Scholar] [CrossRef]
- Aycicek, H.; Oguz, U.; Karci, K. Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen. Int. J. Hyg. Environ. Health 2006, 209, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Bernard, L.; Kereveur, A.; Durand, D.; Gonot, J.; Goldstein, F.; Mainardi, J.; Acar, J.; Carlet, J. Bacterial contamination of hospital physicians’ stethoscopes. Infect. Control Hosp. Epidemiol. 1999, 20, 626–628. [Google Scholar] [CrossRef][Green Version]
- Rutala, W.; Katz, E.; Sherertz, R.; Sarubbi, F. Environmental-study of a methicillin-resistant Staphylococcus aureus epidemic in a burn unit. J. Clin. Microbiol. 1983, 18, 683–688. [Google Scholar] [PubMed]
- White, L.; Dancer, S.; Robertson, C.A. Microbiological evaluation of hospital cleaning methods. Int. J. Environ. Health Res. 2007, 17, 285–295. [Google Scholar] [CrossRef]
- Boone, S.; Gerba, C. Significance of fomites in the spread of respiratory and enteric viral disease. Appl. Environ. Microbiol. 2007, 73, 1687–1696. [Google Scholar] [CrossRef]
- Goldmann, D. Transmission of viral respiratory infections in the home. J. Pediatr. Infect. Dis. 2000, 19, S97–S102. [Google Scholar] [CrossRef]
- Weber, T.; Stilianakis, N. Inactivation of influenza A viruses in the environment and modes of transmission: A critical review. J. Infect. 2008, 57, 361–373. [Google Scholar] [CrossRef]
- Michels, H.; Wilks, S.; Noyce, J.; Keevil, C. Copper Alloys for Human Infectious Disease Control. In Proceedings of the Materials Science and Technology Conference, Pittsburgh, PA, USA, 25–28 September 2005. [Google Scholar]
- Nie, Y.; Kalapos, C.; Nie, X.; Murphy, M.; Hussein, R.; Zhang, J. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Grass, G.; Rensing, C.; Solioz, M. Metallic copper as an antimicrobial surface. Appl Environ. Microbiol. 2011, 77, 1141–1547. [Google Scholar] [CrossRef]
- Lee, F.; Wang, D.; Chen, L.; Kung, C.; Wu, Y. Antibacterial nanostructured composite films for biomedical applications: Microstructural characteristics, biocompatibility, and antibacterial mechanisms. Biofouling 2013, 29, 295–305. [Google Scholar] [CrossRef]
- CDC. Infection Control Measures for Preventing and Controlling Influenza Transmission in Long-Term Care Facilities. Available online: https://phpa.health.maryland.gov/OIDEOR/IMMUN/Shared%20Documents/LTCF_FluPrevention_Dec-2005.pdf (accessed on 15 April 2019).
- Monto, A.; Ansaldi, F.; Aspinall, R.; McElhaney, J.; Montano, L. Influenza control in the 21st century: Optimizing protection of older adults. Vaccine 2009, 27, 5043–5053. [Google Scholar] [CrossRef]
- CDC. Influenza Activity—United States, 2012–2013 Season and Composition of the 2013–14 Influenza Vaccine. Morb. Mortal. Wkly. Rep. 2013, 62, 473–479. [Google Scholar]
- Copper Development Association. Properties of Wrought and Cast Copper Alloys. Available online: http://www.copper.org/resources/properties/db/basic-search.php (accessed on 15 April 2019).
- Copper Development Association. The Copper Advantage: A Guide to Working with Copper and Copper Alloys. Available online: https://www.copper.org/publications/pub_list/pdf/a1360.pdf (accessed on 15 April 2019).
- ALcontrol In-House Methodology. Test Method for Efficacy of Copper Alloy Surfaces as a Sanitizer. Available online: https://www.antimicrobialcopper.org/sites/default/files/upload/media-library/files/pdfs/uk/miscellaneous/bp51.3-copper-alloy-surfaces-as-a-sanitizer.pdf (accessed on 15 April 2019).
- Champagne, V.; Helfritch, D. A demonstration of the antimicrobial effectiveness of various copper surfaces. J. Biol. Eng. 2013, 7. [Google Scholar] [CrossRef]
- Sundberg, K.; Champagne, V.; McNally, B.; Helfritch, D.; Sisson, R. Effectiveness of nanomaterial copper cold spray surfaces on inactivation of influenza A virus. J. Biotechnol. Biomater. 2015, 5. [Google Scholar] [CrossRef]
- Noyce, J.; Michels, H.; Keevill, C. Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl. Environ. Microbiol. 2007, 73, 2748–2750. [Google Scholar] [CrossRef]
- Santo, C.; Lam, E.; Elowsky, C.; Quaranta, D.; Domaille, D.; Chang, C.; Grass, G. Bacterial killing by dry metallic copper surfaces. Appl. Environ. Microbiol. 2011, 77, 794–802. [Google Scholar] [CrossRef]
- Horie, M.; Ogawa, H.; Yoshida, Y.; Yamada, K.; Hara, A. Inactivation and morphological changes of avian influenza virus by copper ions. Arch. Virol. 2008, 153, 1467–1472. [Google Scholar] [CrossRef]
- Sagripanti, J.L.; Routson, L.B.; Lytle, C.D. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl. Environ. Microbiol. 1993, 59, 4374–4376. [Google Scholar]
- Mehrer, H. Diffusion in Solids, Springer Series in Solid-State Sciences; Springer: Berlin, Germany, 2007; Volume 155, pp. 583–591. [Google Scholar]
- Zhang, Y.; Brodusch, N.; Descartes, S.; Chromik, R.; Gauvin, R. Microstructure refinement of cold-sprayed copper investigated by electron channeling contrast imaging. Microsc. Microanal. 2014, 20, 1499–1506. [Google Scholar] [CrossRef]
- Rokni, M.; Widener, C.; Champagne, V. Microstructural evolution of 6061 aluminum gas-atomized powder and high-pressure cold-sprayed deposition. J. Therm. Spray Technol. 2014, 23, 514–524. [Google Scholar] [CrossRef]
- Borchers, C.; Gärtner, F.; Stoltenhoff, T.; Kreye, H. Microstructural bonding features of cold sprayed face centered cubic metals. J. Appl. Phys. 2004, 96, 4288–4292. [Google Scholar] [CrossRef]
- King, P.; Zahiri, S.; Jahedi, M. Microstructural refinement within a cold-sprayed copper. Metall. Mater. Trans. A 2009, 40, 2115–2123. [Google Scholar] [CrossRef]
- Gubicza, J.; Balogh, L.; Hellmig, R.; Estrin, Y.; Ungar, T. Dislocation structure and crystallite size in severely deformed copper by X-ray peak profile analysis. Mater. Sci. Eng. A 2005, 400, 334–338. [Google Scholar] [CrossRef]
- Luo, X.-T.; Li, C.-J. Thermal stability of microstructure and hardness of cold-sprayed cBN/NiCrAI nanocomposite coating. J. Therm. Spray Technol. 2012, 21, 578–585. [Google Scholar] [CrossRef]
- Center for Disease Control Prevention, Electron Micrograph of Methicillin-Resistant Staphylococcus aureus (MRSA). Available online: http://faculty.ccbcmd.edu/courses/bio141/lecguide/unit1/shape/EM_MRSA_staph.html (accessed on 15 April 2019).
- Verran, J.; Boyd, R. The relationship between substratum surface roughness and microbiological and organic soiling: A review. Biofouling 2000, 17, 59–71. [Google Scholar] [CrossRef]
- Hans, M.; Erbe, A.; Mathews, S.; Chen, Y.; Solioz, M.; Mücklich, F. Role of copper oxides in contact killing of bacteria. Langmuir 2013, 29, 16160–16166. [Google Scholar] [CrossRef] [PubMed]
Spray/Property | Temperature °C | Velocity m/s | Porosity % | Oxides % |
---|---|---|---|---|
Plasma Arc | 1500–2500 | 100–400 | ~5 | ~2 |
Wire Arc | 1500–2500 | 50–100 | ~10 | ~15 |
Cold Spray | 150–400 | 500–1000 | <1 | <1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Champagne, V.; Sundberg, K.; Helfritch, D. Kinetically Deposited Copper Antimicrobial Surfaces. Coatings 2019, 9, 257. https://doi.org/10.3390/coatings9040257
Champagne V, Sundberg K, Helfritch D. Kinetically Deposited Copper Antimicrobial Surfaces. Coatings. 2019; 9(4):257. https://doi.org/10.3390/coatings9040257
Chicago/Turabian StyleChampagne, Victor, Kristin Sundberg, and Dennis Helfritch. 2019. "Kinetically Deposited Copper Antimicrobial Surfaces" Coatings 9, no. 4: 257. https://doi.org/10.3390/coatings9040257
APA StyleChampagne, V., Sundberg, K., & Helfritch, D. (2019). Kinetically Deposited Copper Antimicrobial Surfaces. Coatings, 9(4), 257. https://doi.org/10.3390/coatings9040257