Boron and Nitrogen Co-Doped Porous Carbons Synthesized from Polybenzoxazines for High-Performance Supercapacitors
Abstract
1. Introduction
2. Experimental
2.1. Synthesis
2.2. Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
Structure and Morphology Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.; Wei, B.Q. Supercapacitors based on nanostructured carbon. Nano Energy 2013, 2, 159–173. [Google Scholar] [CrossRef]
- Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortière, A.; Daffos, B.; Taberna, P.L.; et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 2016, 351, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Cook, J.B.; Lin, H.; Ko, J.S.; Tolbert, S.H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 2017, 16, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Xia, Y.Y. Recent progress in supercapacitors: From materials design to system construction. Adv. Mater. 2013, 25, 5336–5342. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, S.; Du, X.; Hong, S.; Zhao, S.N.; Chen, Y.X.; Chen, X.H.; Song, H.H. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv. Funct. Mater. 2019, 29, 1901127. [Google Scholar] [CrossRef]
- Feng, N.; Meng, R.J.; Zu, L.H.; Feng, Y.T.; Peng, C.X.; Huang, J.M.; Liu, G.L.; Chen, B.J.; Yang, J.H. A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat. Commun. 2019, 10, 1372. [Google Scholar] [CrossRef] [PubMed]
- Heydari Gharahcheshmeh, M.; Gleason, K.K. Device fabrication based on oxidative chemical vapor deposition (ocvd) synthesis of conducting polymers and related conjugated organic materials. Adv. Mater. Interfaces 2019, 6, 1801564. [Google Scholar] [CrossRef]
- Dutta, S.; Bhaumik, A.; Wu, K.C.W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592. [Google Scholar] [CrossRef]
- Heo, Y.J.; Lee, J.W.; Son, Y.R.; Lee, J.H.; Yeo, C.S.; Lam, T.D.; Park, S.Y.; Park, S.J.; Sinh, L.H.; Shin, M.K. Large-Scale conductive yarns based on twistable korean traditional paper (Hanji) for supercapacitor applications: Toward high-performance paper supercapacitors. Adv. Energy Mater. 2018, 8, 1801854. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, W.; Arcelus, O.; Wang, D.; Shi, X.Y.; Zhang, X.Y.; Carrasco, J.; Rojo, T.; Zheng, W.T. Vertically co-oriented two dimensional metal-organic frameworks for packaging enhanced supercapacitive performance. Commun. Chem. 2018, 1, 6. [Google Scholar] [CrossRef]
- Cui, J.F.; Xi, Y.L.; Chen, S.; Li, D.H.; She, X.L.; Sun, J.; Han, W.; Yang, D.J.; Guo, S.J. Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage. Adv. Funct. Mater. 2016, 26, 8487–8495. [Google Scholar] [CrossRef]
- Wei, J.S.; Ding, C.; Zhang, P.; Ding, H.; Niu, X.Q.; Ma, Y.Y.; Li, C.; Wang, Y.G.; Xiong, H.M. robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv. Mater. 2019, 31, 1806197. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.R.; Yao, B.; Wei, X.J.; Liu, T.Y.; Kou, T.Y.; Xiao, P.; Zhang, Y.H.; Li, Y. Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 2019, 9, 1803665. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, K.K.; Guo, H.; Ning, X.H.; Hu, A.P.; Tang, Q.L.; Fan, B.B.; Zhu, Y.F.; Chen, X.H. Nitrogen-doped worm-like graphitized hierarchical porous carbon designed for enhancing area-normalized capacitance of electrical double layer supercapacitors. Carbon 2017, 117, 163–173. [Google Scholar] [CrossRef]
- Jiang, H.; Lee, P.S.; Li, C.Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53. [Google Scholar] [CrossRef]
- Kim, C.; Kang, D.Y.; Moon, J.H. Full lithographic fabrication of boron-doped 3D porous carbon patterns for high volumetric energy density microsupercapacitors. Nano. Energy 2018, 53, 182–188. [Google Scholar] [CrossRef]
- Guo, W.; Zhou, Y.S.; Pang, L.; Chen, Z.; Dong, Y.H.; Bi, J.J.; Ming, S.J.; Li, T. One-step pyrolysis to synthesize non-graphitic nitrogen-doped 2d ultrathin carbon nanosheets and their application in supercapacitors. ChemElectroChem 2019, 6, 2689–2697. [Google Scholar] [CrossRef]
- Yang, W.; Yang, W.; Kong, L.N.; Song, A.L.; Qin, X.J.; Shao, G.J. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition. Carbon 2018, 127, 557–567. [Google Scholar] [CrossRef]
- Wang, X.W.; Sun, G.Z.; Routh, P.; Kim, D.H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098. [Google Scholar] [CrossRef]
- Chen, Z.; Hou, L.Q.; Cao, Y.; Tang, Y.S.; Li, Y. Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes. Appl. Surf. Sci. 2018, 435, 937–944. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.L.; Wang, C.L.; Jin, X.X.; Qiu, J.S. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors. Chin. Phys. B 2014, 23, 086101. [Google Scholar] [CrossRef]
- Kim, B.H.; Yang, K.S.; Woo, H.G. Boron-nitrogen functional groups on porous nanocarbon fibers for electrochemical supercapacitors. Mater. Lett. 2013, 93, 190–193. [Google Scholar] [CrossRef]
- You, B.; Kang, F.; Yin, P.Q.; Zhang, Q. Hydrogel-derived heteroatom-doped porous carbon networks for supercapacitor and electrocatalytic oxygen reduction. Carbon 2016, 103, 9–15. [Google Scholar] [CrossRef]
- Lin, Z.; Xiang, X.T.; Peng, S.J.; Jiang, X.C.; Hou, L.X. Facile synthesis of chitosan-based carbon with rich porous structure for supercapacitor with enhanced electrochemical performance. J. Electroanal. Chem. 2018, 823, 563–572. [Google Scholar] [CrossRef]
- Iyyamperumal, E.; Wang, S.Y.; Dai, L.M. Vertically aligned BCN nanotubes with high capacitance. ACS Nano 2012, 6, 5259–5265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yan, J.; Fan, Z.J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Wang, Q.; Zhu, Y.Q.; Chen, X.Y. Nanoporous graphitic carbon materials: Systematic incorporation of p-/m-/o-nitroaniline as effective redox additives for largely improving the capacitive performance. Carbon 2016, 100, 564–577. [Google Scholar] [CrossRef]
- Wang, Y.H.; Dong, L.Y.; Lai, G.P.; Wei, M.; Jiang, X.B.; Bai, L.Z. Nitrogen-doped hierarchically porous carbons derived from polybenzoxazine for enhanced supercapacitor performance. Nanomaterials 2019, 9, 131. [Google Scholar] [CrossRef]
- Pi, Y.T.; Xing, X.Y.; Lu, L.M.; He, Z.B.; Ren, T.Z. Hierarchical porous activated carbon in OER with high efficiency. RSC Adv. 2016, 6, 102422–102427. [Google Scholar] [CrossRef]
- Yu, S.; Zhu, X.Q.; Lou, G.B.; Wu, Y.T.; Xu, K.T.; Zhang, Y.; Zhang, L.M.; Zhu, E.H.; Chen, H.; Shen, Z.H.; et al. Sustainable hierarchical porous biomass carbons enriched with pyridinic and pyrrolic nitrogen for asymmetric supercapacitor. Mater. Des. 2018, 149, 184–193. [Google Scholar] [CrossRef]
- Wan, L.; Wang, J.L.; Xie, L.J.; Sun, Y.H.; Li, K.X. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 2014, 6, 15583–15596. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Cai, R.J.; Zeng, Q.C.; Zou, C.; Wu, D.C.; Li, F.; Lu, X.E.; Liang, Y.R.; Fu, R.W. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J. Mater. Chem. 2011, 21, 1970–1976. [Google Scholar] [CrossRef]
- Zhu, J.L.; Wei, P.C.; Li, K.K.; He, S.B.; Pan, Z.Y.; Nie, S.X.; Key, J.; Shen, P.K. Self-assembled nanofiber networks of well-separated B and N codoped carbon as Pt supports for highly efficient and stable oxygen reduction electrocatalysis. ACS Sustain. Chem. Eng. 2019, 7, 660–668. [Google Scholar] [CrossRef]
- Puthusseri, D.; Aravindan, V.; Madhavi, S.; Ogale, S. 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: The magic of in situ porogen formation. Energy Environ. Sci. 2014, 7, 728–735. [Google Scholar] [CrossRef]
- Wang, Y.G.; Song, Y.F.; Xia, Y.Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef] [PubMed]
- Farma, R.; Deraman, M.; Talib, I.A.; Omar, R.; Manjunatha, J.G.; Ishak, M.M.; Basri, N.H.; Dolah, B.N.M. Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int. J. Electrochem. Sci. 2013, 8, 257–273. [Google Scholar]
- Bello, A.; Barzegar, F.; Momodu, D.; Dangbegnon, J.; Taghizadeh, F.; Fabiane, M.; Manyala, N. Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes. J. Power Sources 2015, 273, 305–311. [Google Scholar] [CrossRef]
Name | XPS (wt %) | EA (wt %) | ||
---|---|---|---|---|
N | B | N | B | |
NPC | 3.25 | 0 | 3.42 | 0 |
BNPC-0.05 | 2.84 | 1.02 | 3.07 | 1.15 |
BNPC-0.10 | 2.73 | 1.88 | 2.95 | 2.03 |
BNPC-0.15 | 2.25 | 2.75 | 2.43 | 2.97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Ge, Y.; Bai, L. Boron and Nitrogen Co-Doped Porous Carbons Synthesized from Polybenzoxazines for High-Performance Supercapacitors. Coatings 2019, 9, 657. https://doi.org/10.3390/coatings9100657
Bai L, Ge Y, Bai L. Boron and Nitrogen Co-Doped Porous Carbons Synthesized from Polybenzoxazines for High-Performance Supercapacitors. Coatings. 2019; 9(10):657. https://doi.org/10.3390/coatings9100657
Chicago/Turabian StyleBai, Lijun, Yanping Ge, and Lizhong Bai. 2019. "Boron and Nitrogen Co-Doped Porous Carbons Synthesized from Polybenzoxazines for High-Performance Supercapacitors" Coatings 9, no. 10: 657. https://doi.org/10.3390/coatings9100657
APA StyleBai, L., Ge, Y., & Bai, L. (2019). Boron and Nitrogen Co-Doped Porous Carbons Synthesized from Polybenzoxazines for High-Performance Supercapacitors. Coatings, 9(10), 657. https://doi.org/10.3390/coatings9100657