Multi-Layered Mesoporous TiO2 Thin Films: Photoelectrodes with Improved Activity and Stability
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals, Materials
2.2. Preparation of Mesoporous TiO Thin Films
2.3. Characterization of Mesoporous TiO Thin Films
3. Results and Discussion
3.1. Single-Layered Films
3.2. Multi-Layered Films
3.3. Multi-Layered Films Stability
3.4. Proof of Concept: SPR-Active Gold Nanoparticles Inside MTTFs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Fattakhova-Rohlfing, D.; Zaleska, A.; Bein, T. Three-Dimensional Titanium Dioxide Nanomaterials. Chem. Rev. 2014, 114, 9487–9558. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Bai, J.; Zhou, B. Titanium Dioxide Nanomaterials for Sensor Applications. Chem. Rev. 2014, 114, 10131–10176. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, T.; Zhou, Y.; Meng, C.; Zhu, W.; Liu, L. TiO2-Based Nanoheterostructures for Promoting Gas Sensitivity Performance: Designs, Developments, and Prospects. Sensors 2017, 17, 1971. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 2017, 68, 234–246. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y. Recent Progress of TiO2-Based Anodes for Li Ion Batteries. J. Nanomat. 2016, 2016, 8123652. [Google Scholar] [CrossRef]
- Madian, M.; Eychmüller, A.; Giebeler, L. Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries 2018, 4, 7. [Google Scholar] [CrossRef]
- Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Transparent Superhydrophobic Thin Films with Self-Cleaning Properties. Langmuir 2000, 16, 7044–7047. [Google Scholar] [CrossRef]
- Ollis, D.F. Photocatalytic purification and remediation of contaminated air and water. CR ACAD Sci. IIC Chem. 2000, 3, 405–411. [Google Scholar] [CrossRef]
- Hay, S.O.; Obee, T.; Luo, Z.; Jiang, T.; Meng, Y.; He, J.; Murphy, S.C.; Suib, S. The Viability of Photocatalysis for Air Purification. Molecules 2015, 20, 1319–1356. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Fujisawa, R.; Tsujikawa, S. Photopotentials of Copper Coated with TiO2 by Sol-Gel Method. Zairyo-to-Kankyo 1994, 43, 433–440. [Google Scholar] [CrossRef]
- Sahnesarayi, M.; Sarpoolaky, H.; Rastegari, S. Influence of Multiple Coating and Heat Treatment Cycles on the Performance of a Nano-TiO2 Coating in the Protection of 316L Stainless Steel Against Corrosion under UV Illumination and Dark Conditions. Iran. J. Mater. Sci. Eng. 2019, 16, 33–42. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217–9233. [Google Scholar] [CrossRef]
- Wei, L.; Yu, C.; Zhang, Q.; Liu, H.; Wang, Y. TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J. Mater. Chem. A 2018, 6, 22411–22436. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef] [PubMed]
- Osterloh, F.E. Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater. 2008, 20, 35–54. [Google Scholar] [CrossRef]
- Nuida, T.; Kanai, N.; Hashimoto, K.; Watanabe, T.; Ohsaki, H. Enhancement of photocatalytic activity using UV light trapping effect. Vacuum 2004, 74, 729–733. [Google Scholar] [CrossRef]
- Kajihara, K.; Yao, T. Macroporous Morphology of the Titania Films Prepared by a Sol-Gel Dip-Coating Method from the System Containing Poly(Ethylene Glycol). II. Effect of Solution Composition. J. Sol-Gel Sci. Technol. 1998, 12, 193–201. [Google Scholar] [CrossRef]
- Grosso, D.; de A. A. Soler-Illia, G.J.; Babonneau, F.; Sanchez, C.; Albouy, P.A.; Brunet-Bruneau, A.; Balkenende, A.R. Highly Organized Mesoporous Titania Thin Films Showing Mono-Oriented 2D Hexagonal Channels. Adv. Mater. 2001, 13, 1085–1090. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef] [PubMed]
- Park, J.T.; Roh, D.K.; Patel, R.; Kim, E.; Ryu, D.Y.; Kim, J.H. Preparation of TiO2 spheres with hierarchical pores via grafting polymerization and sol–gel process for dye-sensitized solar cells. J. Mater. Chem. 2010, 20, 8521–8530. [Google Scholar] [CrossRef]
- Chen, D.; Caruso, R.A. Recent Progress in the Synthesis of Spherical Titania Nanostructures and Their Applications. Adv. Funct. Mater. 2013, 23, 1356–1374. [Google Scholar] [CrossRef]
- Ghosh, M.; Lohrasbi, M.; Chuang, S.S.C.; Jana, S.C. Mesoporous Titanium Dioxide Nanofibers with a Significantly Enhanced Photocatalytic Activity. ChemCatChem 2016, 8, 2525–2535. [Google Scholar] [CrossRef]
- Ghosh, M.; Jana, S.C. Bi-component inorganic oxide nanofibers from gas jet fiber spinning process. RSC Adv. 2015, 5, 105313–105318. [Google Scholar] [CrossRef]
- Liu, B.; Aydil, E.S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2009, 131, 3985–3990. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Liu, J.; Chuang, S.S.C.; Jana, S.C. Fabrication of Hierarchical V2O5 Nanorods on TiO2 Nanofibers and Their Enhanced Photocatalytic Activity under Visible Light. ChemCatChem 2018, 10, 3305–3318. [Google Scholar] [CrossRef]
- Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [PubMed]
- Chandra, D.; Bhaumik, A. Super-microporous TiO2 synthesized by using new designed chelating structure directing agents. Micropor. Mesopor. Mat. 2008, 112, 533–541. [Google Scholar] [CrossRef]
- Lv, J.; Zhu, L. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time. Environ. Technol. 2013, 34, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, M.C.; Soler-Illia, G.J.A.A. Processing of Macroporous Titania Thin Films: From Multiscale Functional Porosity to Nanocrystalline Macroporous TiO2. Chem. Mater. 2006, 18, 2109–2117. [Google Scholar] [CrossRef]
- Yao, J.; Takahashi, M.; Yoko, T. Controlled preparation of macroporous TiO2 films by photo polymerization-induced phase separation method and their photocatalytic performance. Thin Solid Films 2009, 517, 6479–6485. [Google Scholar] [CrossRef]
- Malfatti, L.; Bellino, M.G.; Innocenzi, P.; Soler-Illia, G.J.A.A. One-Pot Route to Produce Hierarchically Porous Titania Thin Films by Controlled Self-Assembly, Swelling, and Phase Separation. Chem. Mater. 2009, 21, 2763–2769. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, S.; You, B.; Wu, L. Facile Fabrication and High Photoelectric Properties of Hierarchically Ordered Porous TiO2. Chem. Mater. 2012, 24, 3800–3810. [Google Scholar] [CrossRef]
- Chen, X.; Burda, C. The Electronic Origin of the Visible-Light Absorption Properties of C-, N- and S-Doped TiO2 Nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018–5019. [Google Scholar] [CrossRef]
- Devi, L.G.; Kavitha, R. A review on plasmonic metal–TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl. Surf. Sci. 2016, 360, 601–622. [Google Scholar] [CrossRef]
- Islam, S.Z.; Nagpure, S.; Kim, D.Y.; Rankin, S.E. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania. Inorganics 2017, 5, 15. [Google Scholar] [CrossRef]
- Zaleska, A. Doped-TiO2: A Review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Boukai, A.; Yang, P. High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity. Nano Lett. 2009, 9, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 2017, 38, 1936–1955. [Google Scholar] [CrossRef]
- Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. A Review of Direct Z-Scheme Photocatalysts. Small Meth. 2017, 1, 1700080. [Google Scholar] [CrossRef]
- Feng, D.; Luo, W.; Zhang, J.; Xu, M.; Zhang, R.; Wu, H.; Lv, Y.; Asiri, A.M.; Khan, S.B.; Rahman, M.M.; et al. Multi-layered mesoporous TiO2 thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. J. Mater. Chem. A 2013, 1, 1591–1599. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885. [Google Scholar] [CrossRef]
- Tian, Y.; Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 2004, 1810–1811. [Google Scholar] [CrossRef]
- Bannat, I.; Wessels, K.; Oekermann, T.; Rathouský, J.; Bahnemann, D.; Wark, M. Improving the Photocatalytic Performance of Mesoporous Titania Films by Modification with Gold Nanostructures. Chem. Mater. 2009, 21, 1645–1653. [Google Scholar] [CrossRef]
- Gellé, A.; Moores, A. Water splitting catalyzed by titanium dioxide decorated with plasmonic nanoparticles. Pure Appl. Chem. 2017, 89, 1817–1827. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Arunachalam, P.; Amer, M.S.; Al-Mayouf, A.M. Mesoporous titanium dioxide photoanodes decorated with gold nanoparticles for boosting the photoelectrochemical alkali water oxidation. Mater. Chem. Phys. 2018, 213, 56–66. [Google Scholar] [CrossRef]
- Couzon, N.; Maillard, M.; Chassagneux, F.; Brioude, A.; Bois, L. Photoelectrochemical Behavior of Silver Nanoparticles inside Mesoporous Titania: Plasmon-Induced Charge Separation Effect. Langmuir 2019, 35, 2517–2526. [Google Scholar] [CrossRef] [PubMed]
- Primo, A.; Corma, A.; Garcí-a, H. Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 2011, 13, 886–910. [Google Scholar] [CrossRef] [PubMed]
- Neaţu, Ş.; Maciá-Agulló, J.A.; Concepción, P.; Garcia, H. Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. J. Am. Chem. Soc. 2014, 136, 15969–15976. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, W.D.; Lee, S.; Lee, K.; Lee, S.; Lee, D.; Lee, D.C. Bi2O3 as a Promoter for Cu/TiO2 Photocatalysts for the Selective Conversion of Carbon Dioxide into Methane. ChemCatChem 2016, 8, 1641–1645. [Google Scholar] [CrossRef]
- Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217. [Google Scholar] [CrossRef]
- Pan, J.H.; Zhao, X.; Lee, W.I. Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications. Chem. Eng. J. 2011, 170, 363–380. [Google Scholar] [CrossRef]
- Mahoney, L.; Koodali, R.T. Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications. Materials 2014, 7, 2697–2746. [Google Scholar] [CrossRef]
- Sanchez, C.; Boissière, C.; Grosso, D.; Laberty, C.; Nicole, L. Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity. Chem. Mater. 2008, 20, 682–737. [Google Scholar] [CrossRef]
- Antonelli, D.M.; Ying, J.Y. Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism. Angew. Chem. Int. Ed. 1996, 35, 426–430. [Google Scholar] [CrossRef]
- Soler-Illia, G.J.A.A.; Angelome, P.C.; Fuertes, M.C.; Grosso, D.; Boissiere, C. Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale 2012, 4, 2549–2566. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, X.; Wang, J.; Elzatahry, A.A.; Zhao, D. A Perspective on Mesoporous TiO2 Materials. Chem. Mater. 2014, 26, 287–298. [Google Scholar] [CrossRef]
- Sánchez, V.M.; Martínez, E.D.; Martínez Ricci, M.L.; Troiani, H.; Soler-Illia, G.J.A.A. Optical Properties of Au Nanoparticles Included in Mesoporous TiO2 Thin Films: A Dual Experimental and Modeling Study. J. Phys. Chem. C 2013, 117, 7246–7259. [Google Scholar] [CrossRef]
- Martínez, E.D.; Boissière, C.; Grosso, D.; Sanchez, C.; Troiani, H.; Soler-Illia, G.J.A.A. Confinement-Induced Growth of Au Nanoparticles Entrapped in Mesoporous TiO2 Thin Films Evidenced by in Situ Thermo-Ellipsometry. J. Phys. Chem. C 2014, 118, 13137–13151. [Google Scholar] [CrossRef]
- Granja, L.P.; Martínez, E.D.; Troiani, H.; Sanchez, C.; Soler-Illia, G.J.A.A. Magnetic Gold Confined in Ordered Mesoporous Titania Thin Films: A Noble Approach for Magnetic Devices. ACS Appl. Mater. Int. 2017, 9, 965–971. [Google Scholar] [CrossRef]
- Zalduendo, M.M.; Langer, J.; Giner-Casares, J.J.; Halac, E.B.; Soler-Illia, G.J.A.A.; Liz-Marzan, L.M.; Angelome, P.C. Au Nanoparticles-Mesoporous TiO2 Thin Films Composites as SERS Sensors: A Systematic Performance Analysis. J. Phys. Chem. C 2018, 122, 13095–13105. [Google Scholar] [CrossRef]
- Steinberg, P.Y.; Zalduendo, M.M.; Giménez, G.; Soler-Illia, G.J.A.A.; Angelomé, P.C. TiO2 mesoporous thin film architecture as a tool to control Au nanoparticles growth and sensing capabilities. Phys. Chem. Chem. Phys. 2019, 21, 10347–10356. [Google Scholar] [CrossRef]
- Li, H.; Shen, L.; Zhang, K.; Sun, B.; Ren, L.; Qiao, P.; Pan, K.; Wang, L.; Zhou, W. Surface plasmon resonance-enhanced solar-driven photocatalytic performance from Ag nanoparticle-decorated self-floating porous black TiO2 foams. Appl. Catal. B Environ. 2018, 220, 111–117. [Google Scholar] [CrossRef]
- Violi, I.L.; Perez, M.D.; Fuertes, M.C.; Soler-Illia, G.J.A.A. Highly Ordered, Accessible and Nanocrystalline Mesoporous TiO2 Thin Films on Transparent Conductive Substrates. ACS Appl. Mat. Int. 2012, 4, 4320–4330. [Google Scholar] [CrossRef]
- Brinker, C.J.; Hurd, A.J. Fundamentals of sol-gel dip-coating. J. Phys. III France 1994, 4, 1231–1242. [Google Scholar] [CrossRef]
- Fuertes, M.C.; Colodrero, S.; Lozano, G.; González-Elipe, A.R.; Grosso, D.; Boissière, C.; Sánchez, C.; Soler-Illia, G.J.d.A.A.; Míguez, H. Sorption Properties of Mesoporous Multilayer Thin Films. J. Phys. Chem. C 2008, 112, 3157–3163. [Google Scholar] [CrossRef]
- Krins, N.; Faustini, M.; Louis, B.; Grosso, D. Thick and Crack-Free Nanocrystalline Mesoporous TiO2 Films Obtained by Capillary Coating from Aqueous Solutions. Chem. Mater. 2010, 22, 6218–6220. [Google Scholar] [CrossRef]
- Procházka, J.; Kavan, L.; Shklover, V.; Zukalová, M.; Frank, O.; Kalbáč, M.; Zukal, A.; Pelouchová, H.; Janda, P.; Mocek, K.; et al. Multilayer Films from Templated TiO2 and Structural Changes during their Thermal Treatment. Chem. Mater. 2008, 20, 2985–2993. [Google Scholar] [CrossRef]
- Ismail, A.A.; Bahnemann, D.W.; Rathouský, J.; Yarovyi, V.; Wark, M. Multilayered ordered mesoporous platinum/titania composite films: Does the photocatalytic activity benefit from the film thickness? J. Mater. Chem. 2011, 21, 7802–7810. [Google Scholar] [CrossRef]
- Koganti, V.R.; Dunphy, D.; Gowrishankar, V.; McGehee, M.D.; Li, X.; Wang, J.; Rankin, S.E. Generalized Coating Route to Silica and Titania Films with Orthogonally Tilted Cylindrical Nanopore Arrays. Nano Lett. 2006, 6, 2567–2570. [Google Scholar] [CrossRef] [PubMed]
- Nagpure, S.; Das, S.; Garlapalli, R.K.; Strzalka, J.; Rankin, S.E. In Situ GISAXS Investigation of Low-Temperature Aging in Oriented Surfactant-Mesostructured Titania Thin Films. J. Phys. Chem. C 2015, 119, 22970–22984. [Google Scholar] [CrossRef]
- Choi, S.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G. Thermally Stable Two-Dimensional Hexagonal Mesoporous Nanocrystalline Anatase, Meso-nc-TiO2: Bulk and Crack-Free Thin Film Morphologies. Adv. Funct. Mater. 2004, 14, 335–344. [Google Scholar] [CrossRef]
- Vanýsek, P. Chapter 8: Preparation of Special Analytical Reagents—Electrochemical Series. In CRC Handbook of Chemistry and Physics; Lide, D.R., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 8.1–8.131. [Google Scholar]
- Jiang, X.; Suzuki, N.; Bastakoti, B.P.; Chen, W.J.; Huang, Y.T.; Yamauchi, Y. Controlled Synthesis of Well-Ordered Mesoporous Titania Films with Large Mesopores Templated by Spherical PS-b-PEO Micelles. Eur. J. Inorg. Chem. 2013, 2013, 3286–3291. [Google Scholar] [CrossRef]
- Bass, J.D.; Grosso, D.; Boissiere, C.; Sanchez, C. Pyrolysis, Crystallization, and Sintering of Mesostructured Titania Thin Films Assessed by in Situ Thermal Ellipsometry. J. Am. Chem. Soc. 2008, 130, 7882–7897. [Google Scholar] [CrossRef]
- Djerdj, I.; Tonejc, A. Structural investigations of nanocrystalline TiO2 samples. J. Alloys Compd. 2006, 413, 159–174. [Google Scholar] [CrossRef]
- Swanson, H.E.; McMurdie, H.F.; Morris, M.C.; Evans, E.H. Standard X-ray Diffraction Powder Patterns — Data for 81 Substances; National Bureau of Standards: Washington, DC, USA, 1969; pp. 1–188. [Google Scholar]
- Toledo-Antonio, J.; Gutiérrez-Baez, R.; Sebastian, P.; Vázquez, A. Thermal stability and structural deformation of rutile SnO2 nanoparticles. J. Solid State Chem. 2003, 174, 241–248. [Google Scholar] [CrossRef]
- Grosso, D.; Soler-Illia, G.J.d.A.A.; Crepaldi, E.L.; Cagnol, F.; Sinturel, C.; Bourgeois, A.; Brunet-Bruneau, A.; Amenitsch, H.; Albouy, P.A.; Sanchez, C. Highly Porous TiO2 Anatase Optical Thin Films with Cubic Mesostructure Stabilized at 700 ∘C. Chem. Mater. 2003, 15, 4562–4570. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, F.; Pan, K.; Tian, G.; Jiang, B.; Ren, Z.; Tian, C.; Fu, H. Well-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance. Adv. Funct. Mater. 2011, 21, 1922–1930. [Google Scholar] [CrossRef]
- Tao, J.; Sun, Y.; Ge, M.; Chen, X.; Dai, N. Non-Prefabricated Nanocrystal Mesoporous TiO2-Based Photoanodes Tuned by A Layer-by-Layer and Rapid Thermal Process. ACS Appl. Mater. Int. 2010, 2, 265–269. [Google Scholar] [CrossRef]
- Nagpure, S.; Zhang, Q.; Khan, M.A.; Islam, S.Z.; Xu, J.; Strzalka, J.; Cheng, Y.T.; Knutson, B.L.; Rankin, S.E. Layer-by-Layer Synthesis of Thick Mesoporous TiO2 Films with Vertically Oriented Accessible Nanopores and Their Application for Lithium-Ion Battery Negative Electrodes. Adv. Funct. Mater. 2018, 28, 1801849. [Google Scholar] [CrossRef]
- Wu, Q.L.; Subramanian, N.; Rankin, S.E. Hierarchically Porous Titania Thin Film Prepared by Controlled Phase Separation and Surfactant Templating. Langmuir 2011, 27, 9557–9566. [Google Scholar] [CrossRef]
- Bicelli, L.P.; Bozzini, B.; Mele, C. A review of nanostructural aspects of metal electrodeposition. Int. J. Electrochem. Sci. 2008, 3, 356–408. [Google Scholar]
T/C | FWHM/ | Average Crystallite |
---|---|---|
Size/nm | ||
400 | 0.859 | ≈16 |
500 | 0.709 | ≈24 |
550 | 0.638 | ≈28 |
FWHM/ | Average Crystallite | |
---|---|---|
Size/nm | ||
1 L | 0.638 | ≈28 |
2 L | 0.672 | ≈25 |
4 L | 0.729 | ≈22 |
6 L | 0.623 | ≈30 |
8 L | 0.626 | ≈29 |
10 L | 0.658 | ≈26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gent, E.; Taffa, D.H.; Wark, M. Multi-Layered Mesoporous TiO2 Thin Films: Photoelectrodes with Improved Activity and Stability. Coatings 2019, 9, 625. https://doi.org/10.3390/coatings9100625
Gent E, Taffa DH, Wark M. Multi-Layered Mesoporous TiO2 Thin Films: Photoelectrodes with Improved Activity and Stability. Coatings. 2019; 9(10):625. https://doi.org/10.3390/coatings9100625
Chicago/Turabian StyleGent, Enno, Dereje H. Taffa, and Michael Wark. 2019. "Multi-Layered Mesoporous TiO2 Thin Films: Photoelectrodes with Improved Activity and Stability" Coatings 9, no. 10: 625. https://doi.org/10.3390/coatings9100625
APA StyleGent, E., Taffa, D. H., & Wark, M. (2019). Multi-Layered Mesoporous TiO2 Thin Films: Photoelectrodes with Improved Activity and Stability. Coatings, 9(10), 625. https://doi.org/10.3390/coatings9100625