Prediction of the Corrosion Current Density in Reinforced Concrete Using a Self-Organizing Feature Map
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Selection of the Optimum Prediction Model Using the SOFM
3.2. Sensitivity Analysis of the Selected SOFM–GA Model
3.3. Comparison of the Selected SOFM–GA Model with Linear Regression (LR) and the Radial Basis Function (RBF) Neural Network
LR 1: | icorr = −9.95 + 0.446ρAC + 0.0792ρAC,conc | (4) |
LR 2: | icorr = −9.19 + 0.0352ρDC + 0.392ρAC + 0.0577ρAC,conc | (5) |
LR 3: | icorr = −3.10 − 0.01537T + 0.1143ρDC − 0.049ρAC + 0.1028ρAC,conc | (6) |
4. Conclusions
- It is possible to predict corrosion current density using a SOFM that is optimized with the GA on the basis of parameters determined by non-destructive resistivity measurements and temperature monitoring.
- The GA optimization feature can be used as a powerful tool for optimizing the weights of a SOFM.
- When comparing the results of training, validation and testing of different models of a SOFM, it can be seen that the SOFM model with a 1-9-4 structure, transfer function of TanhAxon, and a momentum training algorithm has a higher ability and accuracy in predicting the corrosion current density of steel in concrete.
- In the SOFM–GA model, the determination coefficient R2 in the training, validation and testing phases is respectively 0.9333, 0.924, and 0.9786, and the slope of the straight line for this parameter is equal to 0.9292, 0.5884, and 0.8329. The values of all errors (MAE, ME, RMSE, MSE) are also less.
- The presented SOFM–GA model has a satisfactory performance for a slab with a moderate corrosion rate. This performance is better than that obtained by the conventional ANN and imperialist competitive algorithm (ICA) approaches that were presented previously in [33,34]. For the modelling purposes the steel bar with diameter of 30 mm has been used.
Author Contributions
Conflicts of Interest
References
- Bertolini, L.; Elsener, B.; Pedeferri, P.; Redaelli, E.; Polder, R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Paul, S.C.; van Zijl, G.P. Chloride-induced corrosion modelling of cracked reinforced SHCC. Arch. Civ. Mech. Eng. 2016, 16, 734–742. [Google Scholar] [CrossRef]
- Poursaee, A. Corrosion of Steel in Concrete Structures; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Safiuddin, M. Concrete damage in field conditions and protective sealer and coating systems. Coatings 2017, 7, 90. [Google Scholar] [CrossRef]
- Ates, M. A review on conducting polymer coatings for corrosion protection. J. Adhes. Sci. Technol. 2016, 30, 1510–1536. [Google Scholar] [CrossRef]
- Williams, M.; Ortega, J.M.; Sánchez, I.; Cabeza, M.; Climent, M.Á. Non-destructive study of the microstructural effects of sodium and magnesium sulphate attack on mortars containing silica fume using impedance spectroscopy. Appl. Sci. 2017, 7, 648. [Google Scholar] [CrossRef]
- Climent, M.Á.; Carmona, J.; Garcés, P. Graphite–cement paste: A new coating of reinforced concrete structural elements for the application of electrochemical anti-corrosion treatments. Coatings 2016, 6, 32. [Google Scholar] [CrossRef]
- Güneyisi, E.M.; Mermerdaş, K.; Gültekin, A. Evaluation and modeling of ultimate bond strength of corroded reinforcement in reinforced concrete elements. Mater. Struct. 2016, 49, 3195–3215. [Google Scholar] [CrossRef]
- Khan, I.; François, R.; Castel, A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams. Cem. Concr. Res. 2014, 56, 84–96. [Google Scholar] [CrossRef]
- Bavarian, B.; Reiner, L. Corrosion Protection of Steel Rebar in Concrete Using Migrating Corrosion Inhibitors; Technical Report for the Cortec Corporation; California State University: Northridge, LA, USA, March 2002. [Google Scholar]
- Hasan, M.I.; Yazdani, N. An experimental study for quantitative estimation of rebar corrosion in concrete using ground penetrating radar. J. Eng. 2016, 2016, 8536850. [Google Scholar] [CrossRef]
- Andisheh, K.; Scott, A.; Palermo, A. Seismic behavior of corroded RC bridges: Review and research gaps. Int. J. Corros. 2016, 2016, 3075184. [Google Scholar] [CrossRef]
- Park, J.W.; Ann, K.Y.; Cho, C.G. Resistance of alkali-activated slag concrete to chloride-induced corrosion. Adv. Mater. Sci. Eng. 2015, 2015, 273101. [Google Scholar] [CrossRef]
- Roberge, P.R. Handbook of Corrosion Engineering; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Randles, J.E.B. Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1947, 1, 11–19. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar] [CrossRef]
- Song, H.W.; Saraswathy, V. Corrosion monitoring of reinforced concrete structures—A review. Int. J. Electrochem. Sci. 2007, 2, 1–28. [Google Scholar]
- Alghamdi, S.A.; Ahmad, S. Service life prediction of RC structures based on correlation between electrochemical and gravimetric reinforcement corrosion rates. Cem. Concr. Compos. 2014, 47, 64–68. [Google Scholar] [CrossRef]
- Millard, S.G.; Sadowski, Ł. Novel method for linear polarisation resistance corrosion measurement. In Proceedings of the NDTCE’09 Non-Destructive Testing in Civil Engineering, Nantes, France, 30 June–3 July 2009. [Google Scholar]
- Kaveh, A.; Nasrollahi, A. A new hybrid meta-heuristic for structural design: Ranked particles optimization. Struct. Eng. Mech. 2014, 52, 405–426. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Sistonen, E. Neural network based hygrothermal prediction for deterioration risk analysis of surface-protected concrete façade element. Constr. Build. Mater. 2016, 113, 34–48. [Google Scholar] [CrossRef]
- Mansouri, I.; Kisi, O.; Sadeghian, P.; Lee, C.-H.; Hu, J.W. Prediction of Ultimate Strain and Strength of FRP-Confined Concrete Cylinders Using Soft Computing Methods. Appl. Sci. 2017, 7, 751. [Google Scholar] [CrossRef]
- Ghorbani, A.; Jafarian, Y.; Maghsoudi, M.S. Estimating shear wave velocity of soil deposits using polynomial neural networks: Application to liquefaction. Comput. Geosci. 2012, 44, 86–94. [Google Scholar] [CrossRef]
- Zavrtanik, N.; Prosen, J.; Tušar, M.; Turk, G. The use of artificial neural networks for modeling air void content in aggregate mixture. Autom. Constr. 2016, 63, 155–161. [Google Scholar] [CrossRef]
- Nasrollahi, A. Optimum shape of large-span trusses according to AISC–LRFD using Ranked Particles Optimization. J. Constr. Steel Res. 2017, 134, 92–101. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Sistonen, E. Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Autom. Constr. 2017, 77, 1–14. [Google Scholar] [CrossRef]
- Rafiei, M.H.; Khushefati, W.H.; Demirboga, R.; Adeli, H. Neural Network, Machine Learning, and Evolutionary Approaches for Concrete Material Characterization. ACI Mater. J. 2016, 113, 781–789. [Google Scholar] [CrossRef]
- Güneyisi, E.M.; Gesoğlu, M.; Güneyisi, E.; Mermerdaş, K. Assessment of shear capacity of adhesive anchors for structures using neural network based model. Mater. Struct. 2016, 49, 1065–1077. [Google Scholar] [CrossRef]
- Güneyisi, E.M.; Mermerdaş, K.; Güneyisi, E.; Gesoğlu, M. Numerical modeling of time to corrosion induced cover cracking in reinforced concrete using soft-computing based methods. Mater. Struct. 2015, 48, 1739–1756. [Google Scholar] [CrossRef]
- Rostami, J.; Chen, J.; Tse, P.W. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes. Sensors 2017, 17, 302. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, A.Z.; Mohammadi, Z. A hybrid intelligent model combining ANN and imperialist competitive algorithm for prediction of corrosion rate in 3C steel under seawater environment. Neural Comput. Appl. 2016, 1–10. [Google Scholar] [CrossRef]
- Topçu, I.; Boğa, A.; Hocaoğlu, F. Modelling corrosion currents of reinforced concrete using ANN. Autom. Constr. 2009, 18, 145–152. [Google Scholar] [CrossRef]
- Sadowski, L. Non-destructive investigation of corrosion current density in steel reinforced concrete by artificial neural networks. Arch. Civ. Mech. Eng. 2013, 13, 104–111. [Google Scholar] [CrossRef]
- Sadowski, L.; Nikoo, M. Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm. Neural Comput. Appl. 2014, 25, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Kohonen, T. Self-Organization and Associative Memory, 3rd ed.; Springer: Berlin, Germany, 1988; Volume 8. [Google Scholar]
- Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Nikoo, M.; Zarfam, P.; Sayahpour, H. Determination of compressive strength of concrete using self organization feature map (SOFM). Eng. Comput. 2015, 31, 113–121. [Google Scholar] [CrossRef]
- Sadowski, L.; Nikoo, M.; Nikoo, M. Principal component analysis combined with a self organization feature map to determine the pull-off adhesion between concrete layers. Constr. Build. Mater. 2015, 78, 386–396. [Google Scholar] [CrossRef]
- Nikoo, M.; Hadzima-Nyarko, M.; Khademi, F.; Mohasseb, S. Estimation of fundamental period of reinforced concrete shear wall buildings using self organization feature map. Struct. Eng. Mech. 2017, 63, 237–249. [Google Scholar] [CrossRef]
- Nikoo, M.; Sadowski, L.; Khademi, F.; Nikoo, M. Determination of Damage in Reinforced Concrete Frames with Shear Walls Using Self-Organizing Feature Map. Appl. Comput. Intell. Soft Comput. 2017, 2017, 3508189. [Google Scholar] [CrossRef]
- Calabrese, L.; Campanella, G.; Proverbio, E. Identification of corrosion mechanisms by univariate and multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete beam. Corros. Sci. 2013, 73, 161–171. [Google Scholar] [CrossRef]
- Tibaduiza, D.A.; Mujica, L.E.; Rodellar, J. Damage classification in structural health monitoring using principal component analysis and self-organizing maps. Struct. Control Health Monit. 2013, 20, 1303–1316. [Google Scholar] [CrossRef]
- Mathavan, S.; Rahman, M.; Kamal, K. Use of a Self-Organizing Map for Crack Detection in Highly Textured Pavement Images. J. Infrastruct. Syst. 2014, 21, 04014052. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O. Self-organizing maps for structural damage detection: a novel unsupervised vibration-based algorithm. J. Perform. Constr. Facil. 2015, 30, 04015043. [Google Scholar] [CrossRef]
- Navío, J.; Martinez-Martinez, J.M.; Urueña, A.; Garcés, J.J.; Soria, E. Self-Organizing Maps to Analyze Value Creation in Mergers and Acquisitions in the Telecommunications Sector. In Emerging Issues in Economics and Development; Ibrahim, M.J., Ed.; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- Sadowski, L. New non-destructive method for linear polarisation resistance corrosion rate measurement. Arch. Civ. Mech. Eng. 2010, 10, 109–116. [Google Scholar] [CrossRef]
- Köliö, A.; Pakkala, T.A.; Hohti, H.; Laukkarinen, A.; Lahdensivu, J.; Mattila, J.; Pentti, M. The corrosion rate in reinforced concrete facades exposed to outdoor environment. Mater. Struct. 2017, 50, 23. [Google Scholar] [CrossRef]
- Shapiro, S.; Wilk, M. An analysis of variance test for normality. Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Gavin, J.B.; Holger, R.M.; Graeme, C.D. Input determination for neural network models in water resources applications. Part 2. Case study: Forecasting salinity in a river. J. Hydrol. 2005, 301, 93–107. [Google Scholar]
- MINITAB software, Version 14; Sofaware for Analyzing Data and Displaying the Results in Easy-to-Read Statistics, Graphs and Charts; Minitab Inc.: State College, PA, USA, 2013.
- NeuroSolutions sofaware, Version 5.0., Software for Data Mining; NeuroDimension Inc.: Gainesville, FL, USA, 2015.
No. | T (°C) | ρAC,bar (kΩ·cm) | ρAC,conc (kΩ·cm) | ρDC (kΩ·cm) | icorr (μA/cm2) |
---|---|---|---|---|---|
1 | 21.00 | 19.31 | 22.27 | 21.81 | 0.422 |
2 | 20.80 | 19.33 | 22.28 | 21.83 | 0.423 |
3 | 20.50 | 19.34 | 22.30 | 21.85 | 0.421 |
4 | 20.10 | 19.35 | 22.31 | 21.91 | 0.439 |
5 | 19.80 | 19.36 | 22.32 | 21.92 | 0.439 |
6 | 19.50 | 19.36 | 22.33 | 21.94 | 0.456 |
7 | 19.20 | 19.37 | 22.36 | 21.96 | 0.466 |
8 | 19.00 | 19.38 | 22.38 | 21.98 | 0.476 |
9 | 20.90 | 19.24 | 22.09 | 21.62 | 0.373 |
10 | 20.70 | 19.25 | 22.12 | 21.63 | 0.380 |
… | … | … | … | … | … |
68 | 19.10 | 19.30 | 22.22 | 21.77 | 0.421 |
No. | Type | Parameter Symbol | Unit | Maximum | Minimum | Mean | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|
1 | Input | T | °C | 21 | 19 | 19.988 | 0.656 | 3.28% |
2 | Input | ρAC,bar | kΩ·cm | 19.38 | 19.23 | 19.304 | 0.041 | 0.21% |
3 | Input | ρAC,conc | kΩ·cm | 22.39 | 22.09 | 22.246 | 0.089 | 0.40% |
4 | Input | ρDC | kΩ·cm | 21.98 | 21.60 | 21.778 | 0.119 | 0.55% |
5 | Output | icorr | μA/cm2 | 0.487 | 0.373 | 0.423 | 0.030 | 7.09% |
No. | Type | Parameter Symbol | Unit | W | α | Wn(α) |
---|---|---|---|---|---|---|
1 | Input | T | °C | 0.923 | 0.01 | 0.956 |
2 | Input | ρAC,bar | kΩ·cm | 0.957 | 0.01 | 0.956 |
3 | Input | ρAC,conc | kΩ·cm | 0.942 | 0.01 | 0.956 |
4 | Input | ρDC | kΩ·cm | 0.924 | 0.01 | 0.956 |
5 | Output | icorr | μA/cm2 | 0.962 | 0.01 | 0.956 |
No. | Neighborhood Shape | Starting Radius | Network | No. of HL | No. of Nodes | Transfer Function | Training Algorithm |
---|---|---|---|---|---|---|---|
1 | SquareKohonenFull | 2 | 5 × 5 | 1 | 9 | TanhAxon | Momentum |
2 | LineKohonenFul | 2 | 6 × 6 | 2 | 5-4 | SigmoidAxon | QuickProp |
3 | DiamondKohonenFul | 2 | 7 × 7 | 3 | 3-3-3 | Linear TanhAxon | Step |
No. | Training | Validation | Testing | |||
---|---|---|---|---|---|---|
Equation | R2 | Equation | R2 | Equation | R2 | |
1 | y = 0.9292x + 0.0299 | 0.9333 | y = 0.5884x + 0.1717 | 0.9240 | y = 0.8329x + 0.0682 | 0.9786 |
2 | y = 0.0008x + 0.4109 | 0.2649 | y = 0.0012x + 0.4107 | 0.6785 | y = 0.0009x + 0.4108 | 0.7263 |
3 | y = 0.8406x + 0.0694 | 0.8093 | y = 0.8477x + 0.0659 | 0.8194 | y = 0.8705x + 0.055 | 0.8968 |
Model Number | Training | Validation | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
ME | 0.0050 | −0.0068 | 0.0061 | −0.0142 | −0.0238 | −0.0091 | −0.0121 | −0.0158 | −0.0112 |
MAE | 0.0241 | 0.0068 | 0.0249 | 0.0142 | 0.0238 | 0.0118 | 0.0183 | 0.0158 | 0.0189 |
MSE | 0.0009 | 0.0000 | 0.0007 | 0.0004 | 0.0006 | 0.0004 | 0.0005 | 0.0002 | 0.0006 |
RMSE | 0.0295 | 0.0068 | 0.0269 | 0.0194 | 0.0238 | 0.0206 | 0.0230 | 0.0158 | 0.0247 |
Row | Symbol of the Input Parameter | icorr |
---|---|---|
1 | T | 0.0006 |
2 | ρDC | 0.0040 |
3 | ρAC,conc | 0.0040 |
4 | ρAC,bar | 0.0046 |
Model | Training | Validation | Testing | |||
---|---|---|---|---|---|---|
Equation | R2 | Equation | R2 | Equation | R2 | |
LR 1 | y = 0.7884x + 0.0877 | 0.8159 | y = 0.3989x + 0.2514 | 0.2369 | y = 0.8965x + 0.0483 | 0.7989 |
LR 2 | y = 0.7895x + 0.0932 | 0.8183 | y = 0.3949x + 0.2588 | 0.2307 | y = 0.8638x + 0.066 | 0.8367 |
LR 3 | y = 0.8695x + 0.0561 | 0.8771 | y = 0.5181x + 0.2003 | 0.4536 | y = 0.7695x + 0.0939 | 0.8946 |
Error | Training | Validation | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
LR 1 | LR 2 | LR 3 | LR 1 | LR 2 | LR 3 | LR 1 | LR 2 | LR 3 | |
ME | 0.0032 | 0.0092 | 0.0059 | −0.0142 | −0.0085 | −0.0147 | −0.0040 | 0.0008 | −0.0108 |
MAE | 0.0226 | 0.0232 | 0.0238 | 0.0175 | 0.0143 | 0.0173 | 0.0225 | 0.0218 | 0.0215 |
MSE | 0.0007 | 0.0008 | 0.0008 | 0.0005 | 0.0003 | 0.0004 | 0.0006 | 0.0006 | 0.0005 |
RMSE | 0.0266 | 0.0279 | 0.0287 | 0.0215 | 0.0183 | 0.0211 | 0.0247 | 0.0239 | 0.0233 |
Model | Network Structure | |||||
---|---|---|---|---|---|---|
Number of Inputs | Number of Outputs | Number of HL | No. of Nodes | Transfer Function | Training Algorithm | |
RBF 1 | 4 | 1 | 1 | 9 | SigmoidAxon | QuickProp |
RBF 2 | 4 | 1 | 1 | 4 | LinearSigmoiAxonr | Step |
RBF 3 | 4 | 1 | 2 | 4-4 | LinearAxon | Delta Bar Delta |
Model | Training | Validation | Testing | |||
---|---|---|---|---|---|---|
Equation | R2 | Equation | R2 | Equation | R2 | |
RBF 1 | y = 0.2242x + 0.3288 | 0.8026 | y = 0.0941x + 0.3811 | 0.3243 | y = 0.2044x + 0.3373 | 0.8421 |
RBF 2 | y = 0.711x + 0.1231 | 0.8039 | y = 0.3205x + 0.2852 | 0.2278 | y = 0.7452x + 0.1151 | 0.9307 |
RBF 3 | y = 1.0124x + 0.0024 | 0.895 | y = 0.6348x + 0.1565 | 0.7908 | y = 0.9116x + 0.0433 | 0.8943 |
Model | Training | Validation | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
RBF 1 | RBF 2 | RBF 3 | RBF 1 | RBF 2 | RBF 3 | RBF 1 | RBF 2 | RBF 3 | |
ME | 0.0054 | 0.0052 | 0.0116 | −0.0140 | −0.0137 | −0.0089 | −0.0050 | −0.0029 | −0.0058 |
MAE | 0.0065 | 0.0189 | 0.0268 | 0.0140 | 0.0164 | 0.0107 | 0.0066 | 0.0165 | 0.0201 |
MSE | 0.0001 | 0.0005 | 0.0010 | 0.0002 | 0.0004 | 0.0003 | 0.0001 | 0.0004 | 0.0006 |
RMSE | 0.0089 | 0.0229 | 0.0322 | 0.0144 | 0.0191 | 0.0167 | 0.0073 | 0.0188 | 0.0239 |
Model | Training | Validation | Testing | |||
---|---|---|---|---|---|---|
Equation | R2 | Equation | R2 | Equation | R2 | |
SOFM–GA | y = 0.9292x + 0.0299 | 0.9333 | y = 0.5884x + 0.1717 | 0.924 | y = 0.8329x + 0.0682 | 0.9786 |
LR | y = 0.8695x + 0.0561 | 0.8771 | y = 0.5181x + 0.2003 | 0.4536 | y = 0.7695x + 0.0939 | 0.8946 |
RBF | y = 1.0124x + 0.0024 | 0.895 | y = 0.6348x + 0.1565 | 0.7908 | y = 0.9116x + 0.0433 | 0.8943 |
Error | Training | Validation | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
SOFM–GA | RBF 3 | LR 3 | SOFM–GA | RBF 3 | LR 4 | SOFM–GA | RBF 3 | LR 4 | |
ME | 0.0050 | 0.0116 | 0.0059 | −0.0142 | −0.0089 | −0.0147 | −0.0121 | −0.0058 | −0.0108 |
MAE | 0.0241 | 0.0268 | 0.0238 | 0.0142 | 0.0107 | 0.0173 | 0.0183 | 0.0201 | 0.0215 |
MSE | 0.0009 | 0.0010 | 0.0008 | 0.0004 | 0.0003 | 0.0004 | 0.0005 | 0.0006 | 0.0005 |
RMSE | 0.0295 | 0.0322 | 0.0287 | 0.0194 | 0.0167 | 0.0211 | 0.0230 | 0.0239 | 0.0233 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikoo, M.; Sadowski, Ł.; Nikoo, M. Prediction of the Corrosion Current Density in Reinforced Concrete Using a Self-Organizing Feature Map. Coatings 2017, 7, 160. https://doi.org/10.3390/coatings7100160
Nikoo M, Sadowski Ł, Nikoo M. Prediction of the Corrosion Current Density in Reinforced Concrete Using a Self-Organizing Feature Map. Coatings. 2017; 7(10):160. https://doi.org/10.3390/coatings7100160
Chicago/Turabian StyleNikoo, Mehdi, Łukasz Sadowski, and Mohammad Nikoo. 2017. "Prediction of the Corrosion Current Density in Reinforced Concrete Using a Self-Organizing Feature Map" Coatings 7, no. 10: 160. https://doi.org/10.3390/coatings7100160
APA StyleNikoo, M., Sadowski, Ł., & Nikoo, M. (2017). Prediction of the Corrosion Current Density in Reinforced Concrete Using a Self-Organizing Feature Map. Coatings, 7(10), 160. https://doi.org/10.3390/coatings7100160