PTFE-Enhanced Tribocatalytic Degradation of High-Concentration (100–500 mg/L) Rhodamine B Solutions Using TiO2 Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Characterization
2.2. Formation of Coatings on the Bottoms of Glass Beakers
2.3. Rh B Degradation Tests
2.4. Detection of Active Species
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Q.; Wang, F.; Liao, K.; Liu, Y.; Mei, Z.; Zhang, S.; Wang, H.; Ma, S.; Wang, L. Self-powered electroassisted photocatalysis for wastewater treatment. Nano Energy 2025, 133, 110463. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, A.; Wu, Y.; Xue, S.; Chen, Z.; Hu, H. Portrait of municipal wastewater of China: Inspirations for wastewater collection, treatment and management. Water Res. 2025, 277, 123321. [Google Scholar] [CrossRef]
- Meena, V.; Swami, D.; Chandel, A.; Joshi, N.; Prasher, S.O. Selected emerging contaminants in water: Global occurrence, existing treatment technologies, regulations and associated risk. J. Hazard. Mater. 2025, 483, 136541. [Google Scholar] [CrossRef]
- Yang, D.; An, Z.; Huo, J.; Chen, L.; Dong, H.; Duan, W.; Zheng, Y.; Wang, M.; He, M.; Gao, S. Ultrastable cobalt-based chainmail catalyst for degradation of emerging contaminants in water. Appl. Catal. B 2025, 363, 124768. [Google Scholar] [CrossRef]
- Nishmitha, P.; Akhilghosh, K.A.; Aiswriya, V.P.; Ramesh, A.; Muthuchamy, M.; Muthukumar, A. Understanding emerging contaminants in water and wastewater: A comprehensive review on detection, impacts, and solutions. J. Hazard. Mater. Adv. 2025, 18, 100755. [Google Scholar] [CrossRef]
- Cao, X.; Chen, S.; Liu, Y.; Long, G.; Xu, Y.J. Domestic wastewater is an overlooked source and quantity in global river dissolved carbon. Nat. Commun. 2025, 16, 7522. [Google Scholar] [CrossRef]
- Abbas, S.; Ahmad, K.; Naseem, K.; Kashif, M.; Majeed, H.; Qureshi, K.; Rehman Shah, H.U.; Ahmad, I.; Khalid, A.; Awais, S. Cutting-edge metal-organic frameworks: Revolutionizing the adsorptive removal of pharmaceutical contaminants from water. Rev. Inorg. Chem. 2025, 45, 885–905. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Wang, K.; Zhang, J.; Niu, J. Introducing oxygen cacancies to tune Cu2O by Sn ion-doped for high-effective photocatalytic degradation of norfloxacin in wastewater. Sep. Purif. Technol. 2025, 356, 129810. [Google Scholar] [CrossRef]
- Saha, H.; Dastider, A.; Anik, M.J.F.; Mim, S.R.; Talapatra, S.; Das, U.; Jamal, M.; Billah, M.M. Photocatalytic performance of CuO NPs: An experimental approach for process parameter optimization for Rh B dye. Results Mater. 2024, 24, 100614. [Google Scholar] [CrossRef]
- Wang, M.; Li, C.; Liu, B.; Qin, W.; Xie, Y. Facile Synthesis of Nano-Flower β-Bi2O3/TiO2 Heterojunction as Photocatalyst for Degradation RhB. Molecules 2023, 28, 882. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, H.; Wang, S.; Zhang, Y.; Bie, C.; Zhang, L. In situ irradiated XPS investigation on S-scheme ZnIn2S4@ COF-5 photocatalyst for enhanced photocatalytic degradation of RhB. J. Mater. 2025, 11, 100975. [Google Scholar]
- Deng, D.; Lamssali, M.; Aryal, N.; Ofori-Boadu, A.; Jha, M.K.; Samuel, R.E. Textiles wastewater treatment technology: A review. Water Environ. Res. 2020, 92, 1805–1810. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Ding, K.; Ye, J.; Li, F.; Ma, C.; Lv, P.; Xu, Y.; Shi, L. Research progress of industrial wastewater treatment technology based on solar interfacial adsorption coupled evaporation process. Sci. Total Environ. 2024, 931, 172887. [Google Scholar] [CrossRef]
- Bikerchalen, S.; Akhsassi, B.; Bakiz, B.; Villain, S.; Taoufyq, A.; Guinneton, F.; Gavarri, J.; Benlhachemi, A. Photocatalytic degradation of Rhodamine B dye over oxygen-rich bismuth oxychloride Bi24O31Cl10 photocatalyst under UV and visible light irradiation: Pathways and mechanism. J. Phys. Chem. Solids 2025, 196, 112342. [Google Scholar] [CrossRef]
- Shamshad, J.; Rehman, R.U. Innovative approaches to sustainable wastewater treatment: A comprehensive exploration of conventional and emerging technologies. Environ. Sci. Adv. 2025, 4, 189–222. [Google Scholar] [CrossRef]
- Senthil Rathi, B.; Senthil Kumar, P.; Sanjay, S.; Prem Kumar, M.; Rangasamy, G. Artificial intelligence integration in conventional wastewater treatment techniques: Techno-economic evaluation, recent progress and its future direction. Int. J. Environ. Sci. Technol. 2025, 22, 633–658. [Google Scholar] [CrossRef]
- Ding, S.; Li, X.; Qiao, X.; Liu, Y.; Wang, H.; Ma, C. Identification and screening of priority pollutants in printing and dyeing industry wastewater and the importance of these pollutants in environmental management in China. Environ. Pollut. 2024, 362, 124938. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Zhang, X.; Yang, B.; Dong, X.; Zhao, Y.; Chen, J.; Chen, K.; Ge, L.; Li, Y. N-doped three-dimensional carbon nanosheets: Facile synthesis and high-concentration dye adsorption. Sep. Purif. Technol. 2025, 359, 130621. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, W.; Li, Y.; Wang, K.; Ge, L.; Zhang, X.; Zhao, J.; Shen, Z.; Chen, W.; Hu, Y. Tribocatalytic degradation of concentrated methyl orange solutions by BiFeO3 nanoparticles prepared through a sol–gel method. RSC. Adv. 2025, 15, 23089–23096. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Wang, K.; Ge, L.; Mao, C.; Zhang, W.; Zhao, J.; Hu, Y.; Zhang, X.; Chen, W. Greatly enhanced tribocatalytic purification of concentrated dye wastewater by TiO2 nanoparticles through Ti and Al2O3 coatings. Colloid Interface Sci. Commun. 2025, 67, 100851. [Google Scholar]
- Li, Y.; Gao, Y.; Li, X.; Zhang, J.; Zhang, X.; Zhang, D. Surface-dominated sodium storage enabled by TiO2 nanosheets with 84% exposure of (0 0 1) facets for high-performance Na-ion battery anodes. Mater. Lett. 2025, 380, 137737. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Wu, Z.; Jia, Y.; Ma, J.; Chen, W.; Zhang, L.; Yang, J.; Liu, Y. Strong tribocatalytic dye decomposition through utilizing triboelectric energy of barium strontium titanate nanoparticles. Nano Energy 2019, 63, 103832. [Google Scholar] [CrossRef]
- Cui, X.; Li, P.; Lei, H.; Tu, C.; Wang, D.; Wang, Z.; Chen, W. Greatly enhanced tribocatalytic degradation of organic pollutants by TiO2 nanoparticles through efficiently harvesting mechanical energy. Sep. Purif. Technol. 2022, 289, 120814. [Google Scholar] [CrossRef]
- Ke, S.; Mao, C.; Luo, R.; Zhou, Z.; Hu, Y.; Zhao, W.; Chen, W. Surprising effects of Al2O3 coating on tribocatalytic degradation of organic dyes by CdS nanoparticles. Coatings 2024, 14, 1057. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, H.; Song, L. Study on the performance and mechanism of tribocatalysis-based multifunctional TiB2 without sacrificial agent for highly selective hydrogen evolution from pure water splitting. Int. J. Hydrogen Energy 2025, 106, 129–137. [Google Scholar] [CrossRef]
- Cui, X.; Wang, H.; Lei, H.; Jia, X.; Jiang, Y.; Fei, L.; Jia, Y.; Chen, W. Surprising tribo-catalytic conversion of H2O and CO2 into flammable gases utilizing frictions of copper in water. Chem. Select. 2023, 8, e202204146. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, J.; Xia, C.; Yuan, S.; Ren, X.; Zhao, L.; Zhuang, L.; He, Y. Boosting photocatalytic efficiency with ohmic contact: A novel Bi/BaTiO3 composite for nitrogen fixation and RhB degradation. J. Alloys Compd. 2025, 1010, 178312. [Google Scholar]
- Bukhari, S.N.U.S.; Shah, A.A.; Liu, W.; Channa, I.A.; Chandio, A.D.; Chandio, I.A.; Ibupoto, Z.H. Activated carbon based TiO2 nanocomposites (TiO2@ AC) used simultaneous adsorption and photocatalytic oxidation for the efficient removal of Rhodamine-B (Rh–B). Ceram. Int. 2024, 50, 41285–41298. [Google Scholar] [CrossRef]
- Halim, O.M.A.; Mustapha, N.H.; Fudzi, S.N.M.; Azhar, R.; Zanal, N.I.N.; Nazua, N.F.; Nordin, A.H.; Azami, M.S.M.; Ishak, M.A.M.; Ismail, W.I.N.W. A review on modified ZnO for the effective degradation of methylene blue and rhodamine B. Surf. Interfaces 2025, 18, 100408. [Google Scholar] [CrossRef]
- Xu, N.; Xia, W.; Yang, X.; Jin, C.; Zhang, W. Simple synthesis of Au modified dual-Bi based heterojunction and its photocatalytic activity for high concentration RhB. Mater. Lett. 2025, 403, 139489. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, J.; Brouzgou, A.; Wang, A.; Jing, S.; Kannan, P.; Chen, F.; Tsiakaras, P. Efficient photocatalytic H2O2 production and photodegradation of RhB over K-doped g-C3N4/ZnO S-scheme heterojunction. J. Colloid Interface Sci. 2025, 677, 1120–1133. [Google Scholar] [CrossRef] [PubMed]
- Barveen, N.R.; Parasuraman, B.; Wang, P.; Zeng, C.; Cheng, Y.; Thangavelu, P. Facile construction of ZnWO4/g-C3N4 heterojunction for the improved photocatalytic degradation of MB, RhB and mixed dyes. Surf. Interfaces 2024, 53, 105039. [Google Scholar] [CrossRef]
- Afshari, Z.; Ramazani, A.; Teymourinia, H. Magnetic based g-C3N4 nanocomposite: Synthesis, characterization, and Z-scheme based photocatalytic properties. Inorg. Chem. Commun. 2025, 172, 113709. [Google Scholar] [CrossRef]
- He, Y.; Jin, Z.; Wu, S.; Jiang, C.; Hu, C.; Liu, L. Enhanced Tribocatalytic CO2 Reduction by TiO2 Nanoparticles. ACS omega 2025, 10, 32339–32347. [Google Scholar] [CrossRef]
- Geng, L.; Qian, Y.; Song, W.; Bao, L. Enhanced tribocatalytic pollutant degradation through tuning oxygen vacancy in BaTiO3 nanoparticles. Appl. Surf. Sci. 2023, 637, 157960. [Google Scholar] [CrossRef]
- Mao, C.; Zhang, Y.; Lei, H.; Jia, X.; Chen, F.; Yao, W.; Liu, P.; Chen, W. Boosting tribo-catalytic degradation of organic pollutants by BaTiO3 nanoparticles through metallic coatings. Appl. Surf. Sci. 2024, 663, 160172. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Hu, Y.; Rao, W. Effect of strontium substitution on the tribocatalytic performance of barium titanate. Materials 2023, 16, 3160. [Google Scholar] [CrossRef]
- Yang, B.; Chen, H.; Guo, X.; Wang, L.; Xu, T.; Bian, J.; Yang, Y.; Liu, Q.; Du, Y.; Lou, X. Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation. J. Mater. Chem. C 2020, 8, 14845–14854. [Google Scholar] [CrossRef]
- Zheng, M.; Guo, M.; Ma, F.; Li, W.; Shao, Y. Recent advances in graphitic carbon nitride-based composites for enhanced photocatalytic degradation of rhodamine B: Mechanism, properties and environmental applications. Nanoscale Adv. 2025, 7, 4780–4802. [Google Scholar] [CrossRef]
- Zhu, M.; Zhou, Z.; Gu, Y.; Bing, L.; Xie, Y.; Shen, Z.; Chen, W. Powerful tribocatalytic degradation of methyl orange solutions with concentrations as high as 100 mg/L by BaTiO3 nanoparticles. Nanomaterials 2025, 15, 1135. [Google Scholar] [CrossRef]
- Mao, C.; Guo, Z.; Chen, W. Coating disk-shaped materials on the bottoms of vessels: A convenient while marvelous practice for tribocatalysis. Surf. Interfaces 2025, 60, 106106. [Google Scholar] [CrossRef]
- Aliaga, J.; Chamorro, N.; Alegría, M.; Araya, J.; Paraguay-Delgado, F.; Alonso-Núñez, G.; González, G.; Benavente, E. Rhenium-doped MoS23D-flower-like nanosheets on 2D-TiO2 core-shell for synergistic photocatalytic degradation of RhB under visible light. Mater. Today Commun. 2025, 44, 111961. [Google Scholar] [CrossRef]
- Peng, B.; Xie, H.; Tao, B.; Wang, Y.; Ning, Z.; Song, Q.; Pei, L. Novel photocatalytic SrTiO3@ TiO2/SrSO4 heterojunction and its high performance in RhB degradation. Nanoscale 2025, 17, 21803–21809. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, Z.; Liu, Y.; Fang, P.; Dai, Y. Enhanced adsorption and photocatalytic degradation of high-concentration methylene blue on Ag2O-modified TiO2-based nanosheet. Chem. Eng. J. 2013, 221, 283–291. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gu, Y.; Cheng, X.; Wang, R.; Zhai, Y.; Zhao, J.; Hu, Y.; Gu, P.; Cheng, F.; Chen, W. PTFE-Enhanced Tribocatalytic Degradation of High-Concentration (100–500 mg/L) Rhodamine B Solutions Using TiO2 Nanoparticles. Coatings 2026, 16, 111. https://doi.org/10.3390/coatings16010111
Gu Y, Cheng X, Wang R, Zhai Y, Zhao J, Hu Y, Gu P, Cheng F, Chen W. PTFE-Enhanced Tribocatalytic Degradation of High-Concentration (100–500 mg/L) Rhodamine B Solutions Using TiO2 Nanoparticles. Coatings. 2026; 16(1):111. https://doi.org/10.3390/coatings16010111
Chicago/Turabian StyleGu, Yanhong, Xi Cheng, Ruixue Wang, Yunlong Zhai, Jianguo Zhao, Yaohua Hu, Pengcheng Gu, Fei Cheng, and Wanping Chen. 2026. "PTFE-Enhanced Tribocatalytic Degradation of High-Concentration (100–500 mg/L) Rhodamine B Solutions Using TiO2 Nanoparticles" Coatings 16, no. 1: 111. https://doi.org/10.3390/coatings16010111
APA StyleGu, Y., Cheng, X., Wang, R., Zhai, Y., Zhao, J., Hu, Y., Gu, P., Cheng, F., & Chen, W. (2026). PTFE-Enhanced Tribocatalytic Degradation of High-Concentration (100–500 mg/L) Rhodamine B Solutions Using TiO2 Nanoparticles. Coatings, 16(1), 111. https://doi.org/10.3390/coatings16010111

