Development and Evaluation of a Bioactive Halophilic Bacterial Exopolysaccharide-Based Coating Material to Extend Shelf Life and Mitigate Citrus Canker Disease in Citrus limon L.
Abstract
1. Introduction
2. Materials and Methods
2.1. Primary and Secondary Screening of Halophiles for Selection of an Isolate
2.2. Characterization of Marine Isolate
2.3. EPS Recovery and Purification
2.3.1. EPS Biosynthesis and Crude-EPS Recovery
2.3.2. EPS Purification by Deproteinization
2.3.3. Column Chromatography Refinement and Yield Determination
2.4. EPS Characterization
2.4.1. Composition and HPTLC Analysis
2.4.2. Spectrophotometric and Spectral Analysis of EPS
2.4.3. Rheological Behavior of EPS
2.4.4. Molecular Weight Determination
2.4.5. Solubility Index and Water Holding Capacity Analysis
2.4.6. Antimicrobial and Antioxidant Potential of EPS
2.4.7. Cytotoxic Effect Analysis of EPS for Using It in Edible Coating
2.5. Development of Biological Coating Material
2.6. Uniform Coating over Lemon Fruits
2.7. Effects of EPS Coating (EC) on Shelf Life and Quality of Lemon Fruits Compared to Uncoated (UC) and Paraffin Wax (PC) Coated Fruits
2.7.1. Investigation of % Weight Loss, Firmness, and Titratable Acidity
2.7.2. Assessment of Shelf Life of Lemon Fruits
2.7.3. Determination of the Quality of Lemon Fruits
2.8. Analysis of % Disease Incidence of Citrus Canker Disease
2.9. Statistical Analysis
3. Results and Discussion
3.1. Isolation, Screening, and Selection of Halophiles Having High Antagonism Against the Xanthomonas citri
3.2. Identification of SWIS03
3.3. Production, Purification, and Recovery of Exopolysaccharide
3.4. Characterization and Analysis of Properties of Halophilic EPS for Biological Coating Development
3.4.1. Determination of Composition and Spectral Study of EPS
3.4.2. HP-TLC Analysis
3.4.3. FTIR
3.4.4. Rheological Behavior and Molecular Weight Determination
3.4.5. Water Holding Capacity and Solubility Index Analysis
3.4.6. Bioactive Properties of EPS
Antimicrobial Activity Against Human Pathogens
Antioxidant Potential of EPS
3.4.7. Cytotoxic Assay
3.5. Analysis of EPS Edible Coating on Lemon Fruits
3.5.1. Effect of EPS Coating on % Weight Loss, Firmness, and Titratable Acidity (TA) of Lemon Fruits
3.5.2. Determination of Shelf Life of Lemon Fruits
3.5.3. Effect of Coating on Biochemical Quality Parameters
Vitamin C Content
Phenolic Compounds Content
MDA Content
3.5.4. Effect of EPS Coating on Citrus Canker Disease by Assessing % Disease Incidence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, H.; Zhang, W.; Xu, Y.; Chen, L.; Cao, J.; Jiang, W. An advance on nutritional profile, phytochemical profile, nutraceutical properties, and potential industrial applications of lemon peels: A comprehensive review. Trends Food Sci. Technol. 2022, 124, 219–236. [Google Scholar] [CrossRef]
- Tavassoli-Kafrani, E.; Gamage, M.V.; Dumée, L.F.; Kong, L.; Zhao, S. Edible films and coatings for shelf life extension of mango: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 2432–2459. [Google Scholar] [CrossRef]
- Shahbaz, E.; Ali, M.; Shafiq, M.; Atiq, M.; Hussain, M.; Balal, R.M.; Sarkhosh, A.; Alferez, F.; Sadiq, S.; Shahid, M.A. Citrus Canker pathogen, its mechanism of infection, eradication, and impacts. Plants 2022, 12, 123. [Google Scholar] [CrossRef]
- Li, H.; Shui, Y.; Li, S.; Xing, Y.; Xu, Q.; Li, X.; Lin, H.; Wang, Q.; Yang, H.; Li, W.; et al. Quality of fresh cut lemon during different temperature as affected by chitosan coating with clove oil. Int. J. Food Prop. 2020, 23, 1214–1230. [Google Scholar] [CrossRef]
- Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal edible coatings for fresh citrus fruit: A review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef]
- Basumatary, I.B.; Mukherjee, A.; Katiyar, V.; Kumar, S. Biopolymer-based nanocomposite films and coatings: Recent advances in shelf-life improvement of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2022, 62, 1912–1935. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Preparation and applications of chitosan and cellulose composite materials. J. Environ. Manag. 2022, 301, 113850. [Google Scholar] [CrossRef] [PubMed]
- Perdones, Á.; Escriche, I.; Chiralt, A.; Vargas, M. Effect of chitosan–Lemon essential oil coatings on volatile profile of strawberries during storage. Food Chem. 2016, 197, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ezati, P.; Khan, A.; Assadpour, E.; Rhim, J.-W.; Jafari, S.M. Encapsulation and delivery systems of cinnamon essential oil for food preservation applications. Adv. Colloid Interface Sci. 2023, 318, 102965. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; He, J.; Gan, L.; Li, X.; Xu, Z.; Yang, L.; Li, R.; Tian, Y. Exopolysaccharide produced by Pediococcus pentosaceus E8: Structure, bio-activities, and its potential application. Front. Microbiol. 2022, 13, 923522. [Google Scholar] [CrossRef]
- Upadhyaya, C.; Patel, H.; Patel, I.; Ahir, P.; Upadhyaya, T. Development of biological coating from novel halophilic exopolysaccharide exerting shelf-life-prolonging and biocontrol actions for post-harvest applications. Molecules 2024, 29, 695. [Google Scholar] [CrossRef]
- Zikmanis, P.; Juhņeviča-Radenkova, K.; Radenkovs, V.; Segliņa, D.; Krasnova, I.; Kolesovs, S.; Orlovskis, Z.; Šilaks, A.; Semjonovs, P. Microbial polymers in edible films and coatings of garden berry and grape: Current and prospective use. Food Bioproce. Technol. 2021, 14, 1432–1445. [Google Scholar] [CrossRef]
- Perveen, S.; Anwar, M.J.; Ismail, T.; Hameed, A.; Naqvi, S.S.; Mahomoodally, M.F.; Saeed, F.; Imran, A.; Hussain, M.; Imran, M.; et al. Utilization of biomaterials to develop the biodegradable food packaging. Int. J. Food Prop. 2023, 26, 1122–1139. [Google Scholar] [CrossRef]
- Morsy, M.K.; Sharoba, A.M.; Khalaf, H.H.; El-Tanahy, H.H.; Cutter, C.N. Efficacy of antimicrobial pullulan-based coating to improve internal quality and shelf-life of chicken eggs during storage. J. Food Sci. 2015, 80, M1066–M1074. [Google Scholar] [CrossRef]
- Gupta, V.; Biswas, D.; Roy, S. A comprehensive review of biodegradable polymer-based films and coatings and their food packaging applications. Materials 2022, 15, 5899. [Google Scholar] [CrossRef]
- Kocira, A.; Kozłowicz, K.; Panasiewicz, K.; Staniak, M.; Szpunar-Krok, E.; Hortyńska, P. Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality—A review. Agronomy 2021, 11, 813. [Google Scholar] [CrossRef]
- López, M.A.-O.; Chavarría, N.-H.; del Rocio Lopez, M.-C.; Rodríguez, A.I.-H. A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse! Int. J. Biol. Macromol. 2021, 177, 559–577. [Google Scholar] [CrossRef] [PubMed]
- Edbeib, M.F.; Wahab, R.A.; Huyop, F. Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World J. Microbiol. Biotechnol. 2016, 32, 135. [Google Scholar] [CrossRef]
- Patel, H.; Jadav, C.; Kalaria, R. Biochemical and molecular profiling of novel halophiles isolated from coastal region of South Gujarat. Biosci. Trend. 2017, 10, 368–378. [Google Scholar]
- Qiao, D.; Hu, B.; Gan, D.; Sun, Y.; Ye, H.; Zeng, X. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii. Carbohydr. Polym. 2009, 76, 422–429. [Google Scholar] [CrossRef]
- Singh, R.P.; Shukla, M.K.; Mishra, A.; Kumari, P.; Reddy, C.; Jha, B. Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydr. Polym. 2011, 84, 1019–1026. [Google Scholar] [CrossRef]
- Saravanan, C.; Shetty, P.K.H. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter. Int. J. Biol. Macromol. 2016, 90, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Gangalla, R.; Sampath, G.; Beduru, S.; Sarika, K.; Govindarajan, R.K.; Ameen, F.; Alwakeel, S.; Thampu, R.K. Optimization and characterization of exopolysaccharide produced by Bacillus aerophilus rk1 and its in vitro antioxidant activities. J. King Saud Univ. Sci. 2021, 33, 101470. [Google Scholar] [CrossRef]
- Khan, M.; Imran, M.; Ashraf, M.; Ishaque, W.; Habib, M. Characterization of Exopolysaccharides Having Potential Antiviral Properties from Priestia Aryabattai Strain MK1 and Bacillus sp. Strain MK2. Microbiol. 2024, 81, 260. [Google Scholar] [CrossRef] [PubMed]
- Yiğit, Y.; Kilislioğlu, A.; Karakuş, S.; Baydoğan, N. Determination of the intrinsic viscosity and molecular weight of Poly (methyl methacrylate) blends. J. Investig. Eng. Technol. 2019, 2, 34–39. [Google Scholar]
- Yang, X.; Ren, Y.; Li, L. The relationship between charge intensity and bioactivities/processing characteristics of exopolysaccharides from lactic acid bacteria. LWT 2022, 153, 112345. [Google Scholar] [CrossRef]
- Upadhyaya, C.; Upadhyaya, T.; Patel, I. Exposure effects of non-ionizing radiation of radio waves on antimicrobial potential of medicinal plants. J. Radiat. Res. Appl. Sci. 2022, 15, 1–10. [Google Scholar] [CrossRef]
- Avelar-Freitas, B.; Almeida, V.; Pinto, M.; Mourão, F.; Massensini, A.; Martins-Filho, O.; Rocha-Vieira, E.; Brito-Melo, G. Trypan blue exclusion assay by flow cytometry. Braz. J. Med. Biol. Res. 2014, 47, 307–315. [Google Scholar] [CrossRef]
- Álvarez, A.; Manjarres, J.J.; Ramírez, C.; Bolívar, G. Use of an exopolysaccharide-based edible coating and lactic acid bacteria with antifungal activity to preserve the postharvest quality of cherry tomato. LWT 2021, 151, 112225. [Google Scholar] [CrossRef]
- Kayesh, E.; Das, S.; Roni, M.; Rajib, M.; Islam, M.; Sultana, H. Shelf life and quality of Sorboti lemon as affected by different chemicals and storage temperature. Arch. Agric. Environ. Sci. 2018, 3, 303–309. [Google Scholar] [CrossRef]
- Valero, A.; Carrasco, E.; García-Gimeno, R.M. Principles and methodologies for the determination of shelf-life in foods. Trends Vital Food Control. Eng. 2012, 1, 3–42. [Google Scholar]
- Ayranci, E.; Tunc, S. The effect of edible coatings on water and vitamin C loss of apricots (Armeniaca vulgaris Lam.) and green peppers (Capsicum annuum L.). Food Chem. 2004, 87, 339–342. [Google Scholar] [CrossRef]
- Zebua, D.N.; Prima, E.C.; Yelliantty; Garnida, Y. Effect of a pectin edible coating with lemon peel extract to maintain strawberry fruit’s quality during cold storage. Food Hum. 2025, 4, 100541. [Google Scholar] [CrossRef]
- Chen, C.; Nie, Z.; Wan, C.; Chen, J. Preservation of Xinyu Tangerines with an Edible Coating Using Ficus hirta Vahl. Fruits Extract-Incorporated Chitosan. Biomolecules 2019, 9, 46. [Google Scholar] [CrossRef]
- Aguirre, C.M.; Viola, C.; Salazar, S.M.; Haelterman, R.M.; Arena, M.E. Characterization of Xanthomonas Isolates Causal of Citrus Canker Type A in Tucumán, Argentina, and Biocontrol Strategies Using Olive and Wine-Derived Agro-Industrial Wastes; Springer Science and Business Media LLC: New York, NY, USA, 2023. [Google Scholar]
- Li, C.; Li, W.; Chen, X.; Feng, M.; Rui, X.; Jiang, M.; Dong, M. Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT 2014, 57, 477–485. [Google Scholar] [CrossRef]
- Hu, Q.; Lu, Y.; Luo, Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym. 2021, 264, 117999. [Google Scholar] [CrossRef]
- Makowski, K.; Leszczewicz, M.; Broncel, N.; Lipińska-Zubrycka, L.; Głębski, A.; Komorowski, P.; Walkowiak, B. Isolation, biochemical characterisation and identification of thermotolerant and cellulolytic paenibacillus lactis and bacillus licheniformis. Food Technol. Biotechnol. 2021, 59, 325–336. [Google Scholar] [CrossRef]
- Malick, A.; Khodaei, N.; Benkerroum, N.; Karboune, S. Production of exopolysaccharides by selected Bacillus strains: Optimization of media composition to maximize the yield and structural characterization. Int. J. Biol. Macromol. 2017, 102, 539–549. [Google Scholar] [CrossRef]
- Rani, R.P.; Anandharaj, M.; Ravindran, A.D. Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. Int. J. Biol. Macromol. 2018, 109, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Karirat, T.; Saengha, W.; Deeseenthum, S.; Ma, N.L.; Sutthi, N.; Wangkahart, E.; Luang-In, V. Data on exopolysaccharides produced by Bacillus spp. from cassava pulp with antioxidant and antimicrobial properties. Data Brief. 2023, 50, 109474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, X.; Cai, L.; Chen, R.; Zhang, Q.; Wang, X. Determination of levan from Bacillus licheniformis by ultraviolet spectrophotometry. Trop. J. Pharm. Res. 2015, 14, 679–685. [Google Scholar] [CrossRef]
- Asgher, M.; Urooj, Y.; Qamar, S.A.; Khalid, N. Improved exopolysaccharide production from Bacillus licheniformis MS3: Optimization and structural/functional characterization. Int. J. Biol. Macromol. 2020, 151, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, C.; Patel, H.; Patel, I.; Upadhyaya, T. Extremophilic Exopolysaccharides: Bioprocess and Novel Applications in 21st Century. Fermentation 2025, 11, 16. [Google Scholar] [CrossRef]
- Huang, E.-L.; Sánchez, E.-L.; Amils, R.; Abrusci, C. Potential applications of an exopolysaccharide produced by Bacillus xiamenensis RT6 isolated from an acidic environment. Polymers 2022, 14, 3918. [Google Scholar] [CrossRef]
- Hamada, M.A.; Hassan, R.A.; Abdou, A.M.; Elsaba, Y.M.; Aloufi, A.S.; Sonbol, H.; Korany, S.M. Bio_fabricated levan polymer from Bacillus subtilis MZ292983.1 with antibacterial, antibiofilm, and burn healing properties. Appl. Sci. 2022, 12, 6413. [Google Scholar] [CrossRef]
- Bomfim, V.B.; Neto, J.H.P.L.; Leite, K.S.; Vieira, D.A.; Iacomini, M.; Silva, C.M.; dos Santos, K.M.O.; Cardarelli, H.R. Partial characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003. LWT 2020, 127, 109349. [Google Scholar] [CrossRef]
- Izadi, P.; Eldyasti, A. Holistic insights into extracellular polymeric substance (EPS) in anammosx bacterial matrix and the potential sustainable biopolymer recovery: A review. Chemosphere 2021, 274, 129703. [Google Scholar] [CrossRef]
- Ye, G.; Li, G.; Wang, C.; Ling, B.; Yang, R.; Huang, S. Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohydr. Polym. 2019, 207, 218–223. [Google Scholar] [CrossRef]
- Berninger, T.; Dietz, N.; López, Ó.G. Water-soluble polymers in agriculture: Xanthan gum as eco-friendly alternative to synthetics. Microb. Biotechnol. 2021, 14, 1881–1896. [Google Scholar] [CrossRef]
- Yanti, N.A.; Ahmad, S.W.; Ramadhan, L.O.A.N.; Walhidayah, T. Mechanical properties of edible film based bacterial cellulose from sago liquid waste using starch as stabilizer. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bristol, UK, 11–12 August 2021; IOP Publishing: Bristol, UK; Volume 948, p. 012063. [Google Scholar]
- Sutthi, N.; Wangkahart, E.; Panase, P.; Karirat, T.; Deeseenthum, S.; Ma, N.L.; Luang-In, V. Dietary administration effects of exopolysaccharide produced by Bacillus tequilensis PS21 using riceberry broken rice, and soybean meal on growth performance, immunity, and resistance to Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus). Animals 2023, 13, 3262. [Google Scholar] [CrossRef] [PubMed]
- Salachna, P.; Mizielińska, M.; Soból, M. Exopolysaccharide gellan gum and derived oligo-gellan enhance growth and antimicrobial activity in Eucomis plants. Polymers 2018, 10, 242. [Google Scholar] [CrossRef]
- Rajoka, M.S.R.; Wu, Y.; Mehwish, H.M.; Bansal, M.; Zhao, L. Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends Food Sci. Technol. 2020, 103, 36–48. [Google Scholar] [CrossRef]
- Choudhuri, I.; Khanra, K.; Pariya, P.; Maity, G.N.; Mondal, S.; Pati, B.R.; Bhattacharyya, N. Structural characterization of an exopolysaccharide isolated from enterococcus faecalis, and study on its antioxidant activity, and cytotoxicity against hela cells. Curr. Microbiol. 2020, 77, 3125–3135. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, N.; Handa, S.; Pathania, S. Purification and characterization of novel exopolysaccharides produced from Lactobacillus paraplantarum KM1 isolated from human milk and its cytotoxicity. J. Genet. Eng. Biotechnol. 2020, 18, 56. [Google Scholar] [CrossRef]
- Vosough, P.R.; Najafi, M.B.H.; Dovom, M.R.E.; Javadmanesh, A.; Mayo, B. Evaluation of antioxidant, antibacterial and cytotoxicity activities of exopolysaccharide from Enterococcus strains isolated from traditional Iranian Kishk. J. Food Meas. Charact. 2021, 15, 5221–5230. [Google Scholar] [CrossRef]
- Yun, Z.; Li, T.; Gao, H.; Zhu, H.; Gupta, V.K.; Jiang, Y.; Duan, X. Integrated transcriptomic, proteomic, and metabolomics analysis reveals peel ripening of harvested banana under natural condition. Biomolecules 2019, 9, 167. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Sethi, S.; Singh, A. Edible coating as postharvest management strategy for shelf-life extension of fresh tomato (Solanum lycopersicum L.): An overview. J. Food Sci. 2022, 87, 2256–2290. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Tenorio, F.; Saez, A.A.; Palacio, D.A.; Galeano, E.; Marin-Palacio, L.D.; Giraldo-Estrada, C. Formulations based on pullulan and a derivative as coating material for the food sector. Carbohydr. Polym. 2024, 342, 122393. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rastegar, S.; Rohani, A. Enhancing Mexican lime (Citrus aurantifolia cv.) shelf life with innovative edible coatings: Xanthan gum edible coating enriched with Spirulina platensis and pomegranate seed oils. BMC Plant Biol. 2024, 24, 906. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Adejumo, I.O.; Afolabi, I.S.; Adetunji, J.B.; Ajisejiri, E.S. Prolonging the shelf life of ‘Agege Sweet’ orange with chitosan–rhamnolipid coating. Hortic. Environ. Biotechnol. 2018, 59, 687–697. [Google Scholar] [CrossRef]
- Arnon, H.; Granit, R.; Porat, R.; Poverenov, E. Development of polysaccharides-based edible coatings for citrus fruits: A layer-by-layer approach. Food Chem. 2015, 166, 465–472. [Google Scholar] [CrossRef]
- Chen, K.; Tian, R.; Xu, G.; Wu, K.; Liu, Y.; Jiang, F. Characterizations of konjac glucomannan/curdlan edible coatings and the preservation effect on cherry tomatoes. Int. J. Biol. Macromol. 2023, 232, 123359. [Google Scholar] [CrossRef]
- Totad, M.G.; Sharma, R.R.; Sethi, S.; Verma, M.K. Effect of edible coatings on ‘Misty’ blueberry (Vaccinium corymbosum) fruits stored at low temperature. Acta Physiol. Plant 2019, 41, 183. [Google Scholar] [CrossRef]
- Pobiega, K.; Przybył, J.L.; Żubernik, J.; Gniewosz, M. Prolonging the shelf life of cherry tomatoes by pullulan coating with ethanol extract of propolis during refrigerated storage. Food Bioprocess Technol. 2020, 13, 1447–1461. [Google Scholar] [CrossRef]
- Arserim, D.K.U.; Konuk, D.T.; Korel, F. Exopolysaccharides in food processing industrials. In Microbial Exopolysaccharides as Novel and Significant Biomaterials; Springer: Berlin/Heidelberg, Germany, 2021; pp. 201–234. [Google Scholar]
- Khodaei, D.; Hamidi-Esfahani, Z.; Rahmati, E. Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS J. 2021, 23, 17–23. [Google Scholar] [CrossRef]
- De Bruno, A.; Gattuso, A.; Ritorto, D.; Piscopo, A.; Poiana, M. Effect of edible coating enriched with natural antioxidant extract and bergamot essential oil on the shelf life of strawberries. Foods 2023, 12, 488. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, C.; Tihan, G.; Zgârian, R.; Pandelea, G. Bio-coatings for preservation of fresh fruits and vegetables. Coatings 2023, 13, 1420. [Google Scholar] [CrossRef]
Treatment | Composition | No. of Replication | Total Number of Lemons Treated |
---|---|---|---|
EPS coating (EC) | EPS of Bacillus tequilensis (2%) + 0.5% glycerol + 1% Tween 80 + 0.5% Oleic acid | 5 | 100 |
Paraffin wax coating (PC) | Paraffin wax (1%) + 0.5% glycerol + 1% Tween 80 + 0.5% Oleic acid | 5 | 100 |
Uncoated fruits (UC) | Uncoated lemons (Immersed in D/W) | 5 | 100 |
Characteristics | SWIS03 | |
---|---|---|
Colony characteristics | Size | Medium |
Shape | Round | |
Margin | Irregular | |
Texture | Rough, wrinkled | |
Elevation | Convex | |
Opacity | Opaque | |
Consistency | Mucoid (sticky) | |
Morphological characteristics | Gram’s nature | Gram-positive |
Size and shape | Large rods | |
Motility | Motile | |
Capsule production | Large capsule forming | |
Spore formation | Spore forming | |
Biochemical characteristics | Indole production | - |
MR | - | |
VP | + | |
Citrate | + | |
Oxidase | - | |
Catalase | + | |
Urease test | - | |
Starch Hydrolysis | + | |
Casein Hydrolysis | + | |
Glucose | + | |
Xylose | + | |
Mannitol | + | |
Lactose | + | |
Sucrose | + | |
Maltose | + |
Isolate | Stepwise Purified EPS | Total Volume (mL) | EPS Recovered (mg/mL) | Total EPS (mg/mL) | % Recovery/Yield |
---|---|---|---|---|---|
SWIS03 | Crude EPS | 50 | 40.50 | 2025 | 100 |
Deproteinized and dialyzed EPS | 33.5 | 41.00 | 1373.5 | 67.82 | |
Gel exclusion chromatographic purification (Sephadex G-75) | 5 | 53.70 | 268.5 | 13.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyaya, C.; Patel, H.; Patel, I.; Upadhyaya, T. Development and Evaluation of a Bioactive Halophilic Bacterial Exopolysaccharide-Based Coating Material to Extend Shelf Life and Mitigate Citrus Canker Disease in Citrus limon L. Coatings 2025, 15, 1068. https://doi.org/10.3390/coatings15091068
Upadhyaya C, Patel H, Patel I, Upadhyaya T. Development and Evaluation of a Bioactive Halophilic Bacterial Exopolysaccharide-Based Coating Material to Extend Shelf Life and Mitigate Citrus Canker Disease in Citrus limon L. Coatings. 2025; 15(9):1068. https://doi.org/10.3390/coatings15091068
Chicago/Turabian StyleUpadhyaya, Chandni, Hiren Patel, Ishita Patel, and Trushit Upadhyaya. 2025. "Development and Evaluation of a Bioactive Halophilic Bacterial Exopolysaccharide-Based Coating Material to Extend Shelf Life and Mitigate Citrus Canker Disease in Citrus limon L." Coatings 15, no. 9: 1068. https://doi.org/10.3390/coatings15091068
APA StyleUpadhyaya, C., Patel, H., Patel, I., & Upadhyaya, T. (2025). Development and Evaluation of a Bioactive Halophilic Bacterial Exopolysaccharide-Based Coating Material to Extend Shelf Life and Mitigate Citrus Canker Disease in Citrus limon L. Coatings, 15(9), 1068. https://doi.org/10.3390/coatings15091068