Study on the Volatile Organic Compound Emission Characteristics of Crumb Rubber-Modified Asphalt
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of CR Modified Asphalt
2.3. Generation and Collection Process for VOC Emissions
2.4. VOC Emission Composition Analysis
3. Results
3.1. Total Concentration
3.2. Composition Concentration Variation
3.3. Potential of Secondary Organic Aerosols (SOA) and Ozone (O3) Formation
3.4. Human Carcinogen Risk Analysis
4. Discussion
4.1. Total Concentration Analysis
4.2. Composition Concentration Variation Analysis
4.3. Potential of Secondary Organic Aerosols (SOA) and Ozone (O3) Formation Analysis
4.4. Human Carcinogen Risk Analysis
4.5. VOC Emission Mechanism Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CR | crumb rubber |
CRMA | crumb rubber-modified asphalt binders |
GC–MS | gas chromatography–mass spectrometry |
ACR | activated crumb rubber |
NCR | non-activated crumb rubber |
SOA | secondary organic aerosol |
References
- Mitchell, C.J.; Jayakaran, A.D. Mitigating tire wear particles and tire additive chemicals in stormwater with permeable pavements. Sci. Total Environ. 2024, 908, 168236. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Ren, Q.; Zhang, J.; He, L.; Su, S.; Wang, Y.; Jiang, L.; Xu, J.; Hu, S.; Xiang, J. Adjusting effects of pyrolytic volatiles interaction in char to upgrade oil by swelling waste nylon-tire. Waste Manag. 2023, 169, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Zerin, N.H.; Rasul, M.G.; Jahirul, M.I.; Sayem, A.S.M. End-of-life tyre conversion to energy: A review on pyrolysis and activated carbon production processes and their challenges. Sci. Total Environ. 2023, 905, 166981. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Gao, Y.; Zhang, X.; Wei, Y.; Cao, J.; Wang, X.; Wang, S. Conventional properties, rheological properties, and storage stability of crumb rubber modified asphalt with WCO and ABS. Constr. Build. Mater. 2023, 392, 131987. [Google Scholar] [CrossRef]
- Xu, G.; Yao, Y.; Ma, T.; Hao, S.; Ni, B. Experimental study and molecular simulation on regeneration feasibility of high-content waste tire crumb rubber modified asphalt. Constr. Build. Mater. 2023, 369, 130570. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, S.; Xie, J.; Yang, C.; Yang, X.; Wang, F.; Liu, Q. Utilization of high contents desulfurized crumb rubber in developing an asphalt rubber pellets modified asphalt. Constr. Build. Mater. 2023, 402, 133043. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, S.; Zhang, M.; Jiang, X.; Polaczyk, P.; Huang, B. Weather aging effects on modified asphalt with rubber-polyethylene composites. Sci. Total Environ. 2023, 865, 161089. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.; Feng, Y.; Li, J.; Gao, M.; Wu, G. Study on rheological and micro-structural properties of different modified asphalt by using organic and inorganic modifier. Case Stud. Constr. Mater. 2023, 18, e02072. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, X.; Lv, S.; Zhang, Y.; He, W.; Yu, F. Research on performance and mechanism of terminal blend/grafting activated crumb rubber composite modified asphalt. Constr. Build. Mater. 2023, 394, 132225. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, G.; Ma, T.; Fan, J.; Li, S. Performances of rubber asphalt with middle/high content of waste tire crumb rubber. Constr. Build. Mater. 2022, 335, 127488. [Google Scholar] [CrossRef]
- Duan, K.; Wang, C.; Liu, J.; Song, L.; Chen, Q.; Chen, Y. Research progress and performance evaluation of crumb-rubber-modified asphalts and their mixtures. Constr. Build. Mater. 2022, 361, 129687. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, H.; Tan, Q.; Yang, X.; Chen, Y.; Lei, L. Application of TOR as a secondary modifier for the preparation of crumb rubber modified asphalt with excellent storage stability. Constr. Build. Mater. 2024, 428, 135863. [Google Scholar] [CrossRef]
- Jin, T.; Sun, L.; Liu, L.; Li, M.; Li, J.; Yuan, J.; Yang, R.; Cheng, H. Development of dynamic shear-rheology-based method to improve evaluation of swelling degree of recycled crumb rubber in asphalt rubber. J. Clean. Prod. 2024, 449, 141851. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, M.; Wu, S.; Jiang, Q.; Xu, H.; Zhao, Z.; Lv, Y. Effects of waterborne polyurethane on storage stability, rheological properties, and VOCs emission of crumb rubber modified asphalt. J. Clean. Prod. 2022, 340, 130682. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, S.; Chen, A.; Liu, Q.; Amirkhanian, S.; Xu, S.; Yang, C.; Wan, P.; Xu, H.; Lu, Z. Comprehensive properties assessment of asphalt binder under aqueous solutions with different pH values and its gradient damage behaviors. Constr. Build. Mater. 2024, 414, 134938. [Google Scholar] [CrossRef]
- Xu, L.; Ni, H.; Tian, Y.; Sun, D.; Chen, Z.; Jin, H. Multi-scale analysis of damping characteristics of dry mixed rubberized porous asphalt mixtures for tire-pavement noise reduction. J. Clean. Prod. 2023, 425, 138969. [Google Scholar] [CrossRef]
- Saberi, K.F.; Fakhri, M.; Azami, A. Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. J. Clean. Prod. 2017, 165, 1125–1132. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, G.; Leng, Z.; Kong, P.; Wang, H.; Yang, J.; Qiu, W.; Xu, Z.; Chen, X. Investigation on storage stability and rheological properties of environment-friendly devulcanized rubber modified asphalt. Phys. Chem. Earth Parts A/B/C 2023, 129, 103332. [Google Scholar] [CrossRef]
- Li, H.; Cui, C.; Temitope, A.A.; Feng, Z.; Zhao, G.; Guo, P. Effect of SBS and crumb rubber on asphalt modification: A review of the properties and practical application. J. Traffic Transp. Eng. Engl. Ed. 2022, 9, 836–863. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Zhou, T.; Cao, L.; Ding, X.; Zhang, B.; Wei, L. Performance evaluation and multiscale investigation of deodorant on mechanism of rubber modified asphalt. J. Clean. Prod. 2023, 425, 138954. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, S.; Xie, J.; Yang, C.; Wang, F.; Li, N.; Liu, Q.; Amirkhanian, S. Effect of direct addition of asphalt rubber pellets on mixing, performance and VOCs of asphalt mixtures. Constr. Build. Mater. 2024, 411, 134494. [Google Scholar] [CrossRef]
- Lv, Y.; Wu, S.; Li, N.; Liu, Q.; Yang, C.; Zou, Y.; Amirkhanian, S. Flue gas suppression and environmental evaluation of deodorizer-modified rubber asphalt based on radar method. Constr. Build. Mater. 2024, 411, 134526. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Zhou, X.; Cao, Z.; Wu, S.; Zhao, Y. Performance and VOCs emission inhibition of high-content waste rubber powder modified asphalt and its mixture. Int. J. Pavement Eng. 2023, 24, 2282031. [Google Scholar] [CrossRef]
- Gong, F.; Guo, S.; Chen, S.; You, Z.; Liu, Y.; Dai, Q. Strength and durability of dry-processed stone matrix asphalt containing cement pre-coated scrap tire rubber particles. Constr. Build. Mater. 2019, 214, 475–483. [Google Scholar] [CrossRef]
- Li, J.; Yu, J.; Wu, S.; Xie, J. The Mechanical Resistance of Asphalt Mixture with Steel Slag to Deformation and Skid Degradation Based on Laboratory Accelerated Heavy Loading Test. Materials 2022, 15, 911. [Google Scholar] [CrossRef]
- Hu, J.; Ma, T.; Zhu, Y.; Huang, X.; Xu, J.; Chen, L. High-viscosity modified asphalt mixtures for double-layer porous asphalt pavement: Design optimization and evaluation metrics. Constr. Build. Mater. 2021, 271, 121893. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Wu, S.; Zhou, X.; Zhao, G.; Zhao, Y.; Cheng, M. Evaluation of VOCs inhibited effects and rheological properties of asphalt with high-content waste rubber powder. Constr. Build. Mater. 2021, 300, 124320. [Google Scholar] [CrossRef]
- Chang, X.; Long, Y.; Wang, C.; Xiao, Y. Chemical fingerprinting of volatile organic compounds from asphalt binder for quan-titative detection. Construction and Building Materials 2023. [CrossRef]
- Xu, H.; Zou, Y.; Airey, G.; Wang, H.; Zhang, H.; Wu, S.; Chen, A. Wetting of bio-rejuvenator nanodroplets on bitumen: A molecular dynamics investigation. J. Clean. Prod. 2024, 444, 141140. [Google Scholar] [CrossRef]
- Kocak, S.; Kutay, M.E. Fatigue performance assessment of recycled tire rubber modified asphalt mixtures using viscoelastic continuum damage analysis and AASHTOWare pavement ME design. Constr. Build. Mater. 2020, 248, 118658. [Google Scholar] [CrossRef]
- Duan, H.; Zhu, C.; Li, Y.; Zhang, H.; Zhang, S.; Xiao, F.; Amirkhanian, S. Effect of crumb rubber percentages and bitumen sources on high-temperature rheological properties of less smell crumb rubber modified bitumen. Constr. Build. Mater. 2021, 277, 122248. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, S.; Xie, J.; Yang, C.; Yang, X.; Chen, S.; Liu, Q. Recycle of waste tire rubber powder in a novel asphalt rubber pellets for asphalt performance enhancement. Constr. Build. Mater. 2023, 399, 132572. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Wang, L.; Zhai, R. The preparation process, service performances and interaction mechanisms of crumb rubber modified asphalt (CRMA) by wet process: A comprehensive review. Constr. Build. Mater. 2022, 354, 129168. [Google Scholar] [CrossRef]
- Luan, Y.; Ma, Y.; Ma, T.; Wang, C.; Xia, F. Research on the effects of asphalt performance on rutting resistance and its correlation with rutting performance indicators. Constr. Build. Mater. 2023, 400, 132773. [Google Scholar] [CrossRef]
- Adnan, A.M.; Wang, J. Enhancement of rheological performance and compatibility of tire rubber-modified asphalt binder with the addition of graphene. Constr. Build. Mater. 2023, 402, 133038. [Google Scholar] [CrossRef]
- Xu, X.; Leng, Z.; Lan, J.; Wang, W.; Yu, J.; Bai, Y.; Sreeram, A.; Hu, J. Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber. Engineering 2021, 7, 857–867. [Google Scholar] [CrossRef]
- Yang, C.; Wu, S.; Cui, P.; Amirkhanian, S.; Zhao, Z.; Wang, F.; Zhang, L.; Wei, M.; Zhou, X.; Xie, J. Performance characterization and enhancement mechanism of recycled asphalt mixtures involving high RAP content and steel slag. J. Clean. Prod. 2022, 336, 130484. [Google Scholar] [CrossRef]
- Lv, Y.; Wu, S.; Li, N.; Cui, P.; Wang, H.; Amirkhanian, S.; Zhao, Z. Performance and VOCs emission inhibition of environmentally friendly rubber modified asphalt with UiO-66 MOFs. J. Clean. Prod. 2023, 385, 135633. [Google Scholar] [CrossRef]
- Xue, Y.; Ge, D.; Lv, S.; Duan, D.; Deng, Y. Evaluation of asphalt modified with bio-oil and high rubber content: Low temperature and short mixing time production condition. Constr. Build. Mater. 2023, 408, 133656. [Google Scholar] [CrossRef]
- Gamboa, C.J.O.; Ruiz, P.A.C.; Kaloush, K.E.; Linares, J.P.L. Life cycle assessment including traffic noise: Conventional vs. rubberized asphalt. Int. J. Life Cycle Assess. 2021, 26, 2375–2390. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, F.; Zhu, X.; Huang, B.; Wang, J.; Amirkhanian, S. Energy consumption and environmental impact of rubberized asphalt pavement. J. Clean. Prod. 2018, 180, 139–158. [Google Scholar] [CrossRef]
- Nanjegowda, V.H.; Biligiri, K.P. Recyclability of rubber in asphalt roadway systems: A review of applied research and advancement in technology. Resour. Conserv. Recycl. 2020, 155, 104655. [Google Scholar] [CrossRef]
- Chang, X.; Xiao, Y.; Long, Y.; Wang, F.; You, Z. Temperature dependency of VOCs release characteristics of asphalt materials under varying test conditions. J. Traffic Transp. Eng. Engl. Ed. 2022, 9, 280–292. [Google Scholar] [CrossRef]
- Li, J.; Xiao, X.; Chen, Z.; Xiao, F.; Amirkhanian, S.N. Internal de-crosslinking of scrap tire crumb rubber to improve compatibility of rubberized asphalt. Sustain. Mater. Technol. 2022, 32, e00417. [Google Scholar] [CrossRef]
- Tang, N.; Zhang, Z.; Dong, R.; Zhu, H.; Huang, W. Emission behavior of crumb rubber modified asphalt in the production process. J. Clean. Prod. 2022, 340, 130850. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Perram, D.; Hand, D.; Ahmed, Z.; Wei, W.; Luo, S. Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions. J. Hazard. Mater. 2019, 365, 942–951. [Google Scholar] [CrossRef]
- Xiao, Z.; Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S. Material recovery and recycling of waste tyres—A review. Clean. Mater. 2022, 5, 100115. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, J.; Wang, X.; Wang, D.; Xie, N.; Shi, X. A review of polymer-modified asphalt binder: Modification mechanisms and mechanical properties. Clean. Mater. 2024, 12, 100255. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Xiao, F.; Amirkhanian, S.N. Surface activation of scrap tire crumb rubber to improve compatibility of rubberized asphalt. Resour. Conserv. Recycl. 2021, 169, 105518. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Han, F.; Lin, Z.; Zhao, Z.; Jin, X.; Liu, Y. Investigation of the effects of chemical modification and oxidative aging on the properties and compatibility of rubber asphalt based on thermodynamic principles. J. Clean. Prod. 2023, 428, 139070. [Google Scholar] [CrossRef]
- Kong, P.; Xu, G.; Fu, L.; Feng, H.; Chen, X. Chemical structure of rubber powder on the compatibility of rubber powder asphalt. Constr. Build. Mater. 2023, 392, 131769. [Google Scholar] [CrossRef]
- Gągol, M.; Boczkaj, G.; Haponiuk, J.; Formela, K. Investigation of volatile low molecular weight compounds formed during continuous reclaiming of ground tire rubber. Polym. Degrad. Stab. 2015, 119, 113–120. [Google Scholar] [CrossRef]
- Cao, L.; Yang, C.; Li, A.; Wang, P.; Zhang, Y.; Dong, Z. Flue gas composition of waste rubber modified asphalt (WRMA) and effect of deodorants on hazardous constituents and WRMA. J. Hazard. Mater. 2021, 403, 123814. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Yu, F.; Li, L.; Dong, Z.; Fini, E.H. Swelling-degradation dynamic evolution behaviors of bio-modified rubberized asphalt under thermal conditions. J. Clean. Prod. 2023, 426, 139061. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, J.; Pei, J.; Zhou, B.; Falchetto, A.C.; Hu, Z. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation. Constr. Build. Mater. 2020, 252, 118956. [Google Scholar] [CrossRef]
- Zhou, B.; Gong, G.; Liu, Y.; Guo, M.; Wang, C. Technical and environmental performance assessment of VOCs inhibited asphalt binders and mixtures. Transp. Res. Part D Transp. Environ. 2023, 124, 103931. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Zhou, L.; Feng, Z.; Sun, J.; Hao, G.; Li, Z. Effect of rubber powder desulfurization on the compatibility between rubber and bitumen: Combination and insight of experiments and molecular dynamics simulation. Constr. Build. Mater. 2024, 414, 134966. [Google Scholar] [CrossRef]
- Formela, K. Strategies for compatibilization of polymer/waste tire rubber systems prepared via melt-blending. Adv. Ind. Eng. Polym. Res. 2024, 7, 466–481. [Google Scholar] [CrossRef]
- Zou, F.; Leng, Z.; Li, D.; Zhang, S.; Yaphary, Y.L.; Lu, G. Leaching potential of metals and PAHs of asphalt rubber paving materials. Transp. Res. Part D Transp. Environ. 2023, 125, 103984. [Google Scholar] [CrossRef]
- Chlebnikovas, A.; Marčiulaitienė, E.; Šernas, O.; Škulteckė, J.; Januševičius, T. Research on air pollutants and odour emissions from paving hot-mix asphalt with end-of-life tyre rubber. Environ. Int. 2023, 181, 108281. [Google Scholar] [CrossRef]
- Xie, J.; Ding, Z.; Luo, H.; Zhao, X.; Li, S.; Ma, Y. Interaction of composite fume suppression and odor elimination agents with crumb rubber modified asphalt: Inhibition behavior of volatile organic compounds (VOCs) and inorganic fume. Sci. Total Environ. 2024, 935, 173459. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Wan, L.; Long, Y.; Xiao, Y.; Xue, Y. Optimal zeolite structure design for VOC emission reduction in asphalt materials. Constr. Build. Mater. 2023, 366, 130227. [Google Scholar] [CrossRef]
- Boczkaj, G.; Przyjazny, A.; Kaminski, M. Characteristics of volatile organic compounds emission profiles from hot road bitumens. Chemosphere 2014, 107, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Celebi, U.B.; Vardar, N. Investigation of VOC emissions from indoor and outdoor painting processes in shipyards. Atmos. Environ. 2008, 42, 5685–5695. [Google Scholar] [CrossRef]
- Wang, F.; Li, N.; Hoff, I.; Wu, S.; Li, J.; Maria Barbieri, D.; Zhang, L. Characteristics of VOCs generated during production and construction of an asphalt pavement. Transp. Res. Part D Transp. Environ. 2020, 87, 102517. [Google Scholar] [CrossRef]
- Xing, B.; Feng, Y.; Sun, S.; Qian, C.; Fang, C.; Lv, X.; Song, A.; Lyu, Y. Investigations on the rheological and swelling-degradation behavior of crumb rubber within the bituminous matrix. Constr. Build. Mater. 2023, 367, 130262. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Yang, C.; Xie, J.; Xiao, Y.; Zhao, Z.; Wang, F.; Zhang, L. Quantitative Assessment of Road Performance of Recycled Asphalt Mixtures Incorporated with Steel Slag. Materials 2022, 15, 5005. [Google Scholar] [CrossRef]
- Yan, Y.; Guo, R.; Liu, Z.; Yang, Y.; Wang, X.-Y. Property improvement of thermosetting natural rubber asphalt binder by mineral oil. J. Mater. Res. Technol. 2023, 24, 8807–8825. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Zhang, X.; Cao, J.; Wang, X. Rheological properties and viscosity reduction mechanism of aromatic/naphthenic oil pre-swelling crumb rubber modified asphalt. Constr. Build. Mater. 2023, 398, 132545. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Wan, C.; Yang, B.; Tang, Z.; Li, W. Performance evaluation of asphalt binder and mixture modified by pre-treated crumb rubber. Constr. Build. Mater. 2023, 362, 129777. [Google Scholar] [CrossRef]
- Wang, G.; Yang, X.; Yang, D.; Rong, H.; Meng, Y.; Liu, G. Effect of heating history on the emission of volatile organic compounds from asphalt materials. Sci. Total Environ. 2023, 900, 165692. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Fang, G.; Hu, Y.; Qin, Y.; Xu, R.; Yang, F.; Lei, J.; Zhang, C. Study on the effect of different aldehyde modifiers on the fume suppression effect, mechanism and road performance of SBS modified asphalt. Sci. Total Environ. 2024, 912, 169162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qi, J.; Sun, Y.; Zhu, Z.; Wang, C.; Sun, X.; Li, J. Anchoring nanosized MOFs at the interface of porous millimeter beads and their enhanced adsorption mechanism for VOCs. J. Clean. Prod. 2022, 353, 131631. [Google Scholar] [CrossRef]
- Xiu, M.; Wang, X.; Morawska, L.; Pass, D.; Beecroft, A.; Mueller, J.F.; Thai, P. Emissions of particulate matters, volatile organic compounds and polycyclic aromatic hydrocarbons from warm and hot asphalt mixes. J. Clean. Prod. 2020, 275, 123094. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Wen, P.; Sun, X.; Guo, T. Performance evaluation of tourmaline modified asphalt mixture based on grey target decision method. Constr. Build. Mater. 2019, 205, 137–147. [Google Scholar] [CrossRef]
- Liu, G.; Fang, S.; Wang, Y.; Liu, J.; Liang, Y.; Cao, T.; Liu, Q. Emission of Volatile Organic Compounds in Crumb Rubber Modified Bitumen and Its Inhibition by Using Montmorillonite Nanoclay. Polymers 2023, 15, 1513. [Google Scholar] [CrossRef]
- Zeng, S.; Mao, S.; Xu, S.; He, Y.; Yu, J. Investigation on DOPO as reactive fumes suppressant to reduce the fumes emission of asphalt. J. Hazard. Mater. 2024, 463, 132878. [Google Scholar] [CrossRef]
- Yao, Z.; Yang, R.; Shi, J.; Zhang, C.; Zhang, Y. Separation mechanism of asphalt rubber and improvement with microwave irradiation. Constr. Build. Mater. 2022, 342, 127862. [Google Scholar] [CrossRef]
- Hosseinnezhad, S.; Kabir, S.F.; Oldham, D.; Mousavi, M.; Fini, E.H. Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. J. Clean. Prod. 2019, 225, 82–89. [Google Scholar] [CrossRef]
- Yang, X.; Shen, A.; Li, B.; Wu, H.; Lyu, Z.; Wang, H.; Lyu, Z. Effect of microwave-activated crumb rubber on reaction mechanism, rheological properties, thermal stability, and released volatiles of asphalt binder. J. Clean. Prod. 2020, 248, 119230. [Google Scholar] [CrossRef]
- Liang, M.; Ren, S.; Fan, W.; Wang, H.; Cui, W.; Zhao, P. Characterization of fume composition and rheological properties of asphalt with crumb rubber activated by microwave and TOR. Constr. Build. Mater. 2017, 154, 310–322. [Google Scholar] [CrossRef]
- Phiri, M.M.; Phiri, M.J.; Formela, K.; Wang, S.; Hlangothi, S.P. Grafting and reactive extrusion technologies for compatibilization of ground tyre rubber composites: Compounding, properties, and applications. J. Clean. Prod. 2022, 369, 133084. [Google Scholar] [CrossRef]
- Szerb, E.I.; Nicotera, I.; Teltayev, B.; Vaiana, R.; Rossi, C.O. Highly stable surfactant-crumb rubber-modified bitumen: NMR and rheological investigation. Road Mater. Pavement Des. 2017, 19, 1192–1202. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X.; Wang, X.; Huo, J.; Guo, H.; Yang, B. Performance of modified asphalt of rubber powder through tetraethyl orthosilicate (TEOS). Constr. Build. Mater. 2021, 267, 121032. [Google Scholar] [CrossRef]
- Li, J.; Xiao, F.; Amirkhanian, S.N. Rheological and chemical characterization of plasma-treated rubberized asphalt using customized extraction method. Fuel 2020, 264, 116819. [Google Scholar] [CrossRef]
- Saputra, R.; Walvekar, R.; Khalid, M.; Mubarak, N.M.; Sillanpää, M. Current progress in waste tire rubber devulcanization. Chemosphere 2021, 265, 129033. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, C.; Hu, Y.; Zeng, D.; Huang, M.; Jiang, Y. High-quality ground tire rubber production from scrap tires by using supercritical carbon dioxide jet pulverization assisted with diphenyl disulfide. Powder Technol. 2022, 398, 117061. [Google Scholar] [CrossRef]
- Badughaish, A.; Li, J.; Amirkhanian, S.; Xiao, F. Adhesion and segregation characteristics of crumb rubberized binders based on solution-soaked methods. J. Clean. Prod. 2022, 354, 131762. [Google Scholar] [CrossRef]
- Dong, R.; Zhao, M.; Tang, N. Characterization of crumb tire rubber lightly pyrolyzed in waste cooking oil and the properties of its modified bitumen. Constr. Build. Mater. 2019, 195, 10–18. [Google Scholar] [CrossRef]
- Li, J.; Yao, S.; Xiao, F.; Amirkhanian, S.N. Surface modification of ground tire rubber particles by cold plasma to improve compatibility in rubberised asphalt. Int. J. Pavement Eng. 2020, 23, 651–662. [Google Scholar] [CrossRef]
- Xie, J.; Yang, Y.; Lv, S.; Zhang, Y.; Zhu, X.; Zheng, C. Investigation on Rheological Properties and Storage Stability of Modified Asphalt Based on the Grafting Activation of Crumb Rubber. Polymers 2019, 11, 1563. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Liu, J.; Li, W.; Duan, W. Novel Method to Prepare Activated Crumb Rubber Used for Synthesis of Activated Crumb Rubber Modified Asphalt. J. Mater. Civ. Eng. 2015, 27, 04014173. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Xie, J.; Gui, Z.; Li, N.; Xu, Y. Analysis of OMMT strengthened UV aging-resistance of Sasobit/SBS modified asphalt: Its preparation, characterization and mechanism. J. Clean. Prod. 2021, 315, 128139. [Google Scholar] [CrossRef]
- Xiao, F.; Hou, X.; Amirkhanian, S.; Kim, K.W. Superpave evaluation of higher RAP contents using WMA technologies. Constr. Build. Mater. 2016, 112, 1080–1087. [Google Scholar] [CrossRef]
- Lv, Y.; Wu, S.; Li, N.; Wang, H.; Cui, P.; Xu, H.; Zhao, Y.; Yang, C.; Zhou, X.; Amirkhanian, S. Environmental hazard reduction and anti-aging enhancement of steel slag powder-asphalt mastic based on TiO2@UiO-67 composites. J. Clean. Prod. 2023, 419, 138331. [Google Scholar] [CrossRef]
- Tao, Z.; Shen, S.; Yu, H.; Sun, Y.; Zou, Y. Rejuvenating aged asphalt using surfactant-foaming warm recycling technology. Constr. Build. Mater. 2023, 384, 131297. [Google Scholar] [CrossRef]
- Sesay, T.; You, Q.; Chuan, J.; Qiao, H.; Zhang, H.; Tian, S. High and intermediate temperature performance of warm asphalt rubber containing conventional warm mix additives and novel chemical surfactant. Constr. Build. Mater. 2023, 394, 132214. [Google Scholar] [CrossRef]
- Amirkhani, M.J.; Fakhri, M.; Amirkhani, A. Evaluating the use of different fillers and Kaowax additive in warm mix asphalt mixtures. Case Stud. Constr. Mater. 2023, 19, e02489. [Google Scholar] [CrossRef]
- Zaremotekhases, F.; Sadek, H.; Hassan, M.; Berryman, C. Impact of warm-mix asphalt technologies and high reclaimed asphalt pavement content on the performance of alternative asphalt mixtures. Constr. Build. Mater. 2022, 319, 126035. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, N.; Yang, F.; Ren, Y.; Wu, S.; Wang, F.; Xie, J. Rheology and volatile organic compounds characteristics of warm-mix flame retardant asphalt. Constr. Build. Mater. 2021, 298, 123691. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Zhao, J.; Li, C.; Fan, X. Rapid and Direct Assessment of Asphalt Volatile Organic Compound Emission Based on Carbon Fiber Ionization Mass Spectrometry. ACS Omega 2023, 8, 12968–12979. [Google Scholar] [CrossRef]
- Wang, M.; Li, P.; Nian, T.; Mao, Y. An overview of studies on the hazards, component analysis and suppression of fumes in asphalt and asphalt mixtures. Constr. Build. Mater. 2021, 289, 123185. [Google Scholar] [CrossRef]
- Guo, P.; Feng, Y.; Wei, W.; He, L.; Tang, B. Adhesion of warm-mix recycled asphalt aggregate mixtures based on surface free energy theory. J. Mater. Civ. Eng. 2019, 31, 04019209. [Google Scholar] [CrossRef]
- Tang, N.; Yang, K.-k.; Alrefaei, Y.; Dai, J.-G.; Wu, L.-M.; Wang, Q. Reduce VOCs and PM emissions of warm-mix asphalt using geopolymer additives. Constr. Build. Mater. 2020, 244, 118338. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Liang, N.; Wang, Y.; Li, Z.; Li, X. Polyphosphazene functionalized magnesium hydroxide core-shell architecture fire retardant: Toward a fire-safe multifunctional styrene-butadiene-styrene asphalt. Fuel 2024, 370, 131822. [Google Scholar] [CrossRef]
- Xu, G.; Chen, X.; Zhu, S.; Kong, L.; Huang, X.; Zhao, J.; Ma, T. Evaluation of Asphalt with Different Combinations of Fire Retardants. Materials 2019, 12, 1283. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, G.; Zhu, X. Emission reduction effect of eco-friendly asphalt modified with isocyanate-nanoclay composites. J. Clean. Prod. 2024, 458, 142530. [Google Scholar] [CrossRef]
- Sheng, Y.; Wu, Y.; Yan, Y.; Jia, H.; Qiao, Y.; Underwood, B.S.; Niu, D.; Kim, Y.R. Development of environmentally friendly flame retardant to achieve low flammability for asphalt binder used in tunnel pavements. J. Clean. Prod. 2020, 257, 120487. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Cao, Z.; Gong, G.; Liu, Y.; Cao, X.; Tang, B.; Wang, C. Effects of different inhibitors on emission characteristics, environmental impact and health risk of volatile organic compounds from asphalt binder. J. Clean. Prod. 2023, 428, 139427. [Google Scholar] [CrossRef]
- Lv, Y.; Wu, S.; Xu, H.; Li, N.; Liu, Q.; Wang, H.; Zou, Y.; Jiang, Q.; Amirkhanian, S. Simulation of Inhibition and Targeted Adsorption of Rubberized Asphalt VOCs by UiO-66 Based on Molecular Dynamics. J. Clean. Prod. 2024, 447, 141541. [Google Scholar] [CrossRef]
- Liu, J.; Hao, P.; Dou, Z.; Wang, J.; Ma, L. Rheological, healing and microstructural properties of unmodified and crumb rubber modified asphalt incorporated with graphene/carbon black composite. Constr. Build. Mater. 2021, 305, 124512. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Wu, S.; Lv, Y.; Wan, P.; Gong, X.; Liu, G. Study of synergistic effect of diatomite and modified attapulgite on reducing asphalt volatile organic compounds emission. Constr. Build. Mater. 2023, 400, 132827. [Google Scholar] [CrossRef]
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm mix asphalt: An overview. J. Clean. Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Tan, H.; Shan, G. Computational screening and functional tuning of chemically stable metal organic frameworks for I2/CH3I capture in humid environments. iScience 2024, 27, 109096. [Google Scholar] [CrossRef]
- Liang, J.; Tan, H.; Liu, J.; Qi, H.; Li, X.; Wu, L.; Xue, X.; Shan, G. Combined experimental and theoretical studies on iodine capture of Zr-based metal-organic frameworks: Effect of N-functionalization and adsorption mechanism. Mater. Today Sustain. 2023, 24, 100574. [Google Scholar] [CrossRef]
- Vo, T.K.; Le, V.N.; Quang, D.T.; Song, M.; Kim, D.; Kim, J. Rapid defect engineering of UiO-67 (Zr) via microwave-assisted continuous-flow synthesis: Effects of modulator species and concentration on the toluene adsorption. Microporous Mesoporous Mater. 2020, 306, 110405. [Google Scholar] [CrossRef]
- Wu, R.; Xiao, Y.; Zhang, P.; Lin, J.; Cheng, G.; Chen, Z.; Yu, R. Asphalt VOCs reduction of zeolite synthesized from solid wastes of red mud and steel slag. J. Clean. Prod. 2022, 345, 131078. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Wei, H.; Zhu, H.; Tang, B. Evaluation of volatile organic compounds emissions and rheological properties of Buton rock asphalt modified asphalt. Constr. Build. Mater. 2023, 408, 133575. [Google Scholar] [CrossRef]
- Wang, S.; Tan, L.; Xu, T. Synergistic effects of developed composite flame retardant on VOCs constituents of heated asphalt and carbonized layer compositions. J. Clean. Prod. 2022, 367, 133107. [Google Scholar] [CrossRef]
- Bi, F.; Ma, S.; Gao, B.; Liu, B.; Huang, Y.; Qiao, R.; Zhang, X. Boosting toluene deep oxidation by tuning metal-support interaction in MOF-derived Pd@ZrO2 catalysts: The role of interfacial interaction between Pd and ZrO2. Fuel 2024, 357, 129833. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Rao, R.; Bi, F.; Li, C.; Yue, K.; Wang, Y.; Xu, J.; Feng, X.; Yang, Y. Defects materials of Institut Lavoisier-125(Ti) materials enhanced photocatalytic activity for toluene and chlorobenzene mixtures degradation: Mechanism study. J. Colloid Interface Sci. 2024, 660, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, H.; Xue, Y.; Chang, X. Adsorption Effect and Adsorption Mechanism of High Content Zeolite Ceramsite on Asphalt VOCs. Materials 2022, 15, 6100. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Liu, G.; Cao, T.; Amirkhanian, S. Effect of organo-montmorillonite nanoclay on VOCs inhibition of bitumen. Constr. Build. Mater. 2017, 146, 429–435. [Google Scholar] [CrossRef]
- Li, L.; Zhou, T.; Cao, L.; Zhou, J.; Liu, Z.; Dong, Z. Characterization of emissions from rubber modified asphalt and their impact on environmental burden: Insights into composition variability and hazard assessment. J. Hazard. Mater. 2024, 477, 135336. [Google Scholar] [CrossRef]
- Shi, H.; Xu, T.; Zhou, P.; Jiang, R. Combustion properties of saturates, aromatics, resins, and asphaltenes in asphalt binder. Constr. Build. Mater. 2017, 136, 515–523. [Google Scholar] [CrossRef]
- Xia, W.; Xu, T.; Wang, H. Thermal behaviors and harmful volatile constituents released from asphalt components at high temperature. J. Hazard. Mater. 2019, 373, 741–752. [Google Scholar] [CrossRef]
- Xu, T.; Shi, H.; Wang, H.; Huang, X. Dynamic evolution of emitted volatiles from thermal decomposed bituminous materials. Constr. Build. Mater. 2014, 64, 47–53. [Google Scholar] [CrossRef]
- Kitto, A.M.; Pirbazari, M.; Badriyha, B.N.; Ravindran, V.; Tyner, R.; Synolakis, C.E. Emissions of Volatile and Semi-Volatile Organic Compounds and Particulate Matter from Hot Asphalts. Environ. Technol. 1997, 18, 121–138. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Leng, B.; Wu, S.; Chen, D.; Zhao, Z. Investigation on storage stability, H2S emission and rheological properties of modified asphalt with different pretreated waste rubber powder. J. Clean. Prod. 2024, 456, 142469. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, X.; Liu, Y.; Ge, D.; Wang, S.; Ding, Z.; Lv, S. Microbial treatment of waste crumb rubber: Reducing energy consumption and harmful emissions during asphalt production process. J. Clean. Prod. 2024, 464, 142778. [Google Scholar] [CrossRef]
- Liu, J.; Qi, C.; Liu, Q.; Wang, H.; Wang, C.; Zhang, Y.; Wu, S.; Li, N. Study on the effects of organic-inorganic composite inhibitor on fume emissions of rubber modified asphalt. Constr. Build. Mater. 2024, 455, 139206. [Google Scholar] [CrossRef]
- Lv, Y.; Wu, S.; Li, N.; Cui, P.; Liu, Q.; Amirkhanian, S. Screening and Environmental Risk Assessment of VOCs Preferential Pollutants in Net Flavor Rubber-Modified Asphalt Based on the Information Entropy Method. Constr. Build. Mater. 2024, 420, 135616. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, N.; Zhu, H.; Xi, Y.; Cheng, H.; Liu, J.; Li, R. Compositional analysis and quantitative evaluation of organic emissions from asphalt materials: Improvements and refinements. J. Clean. Prod. 2024, 467, 142936. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, B.; Wang, S.; Hao, J. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. J. Environ. Sci. 2017, 53, 224–237. [Google Scholar] [CrossRef]
- Zhao, X.; You, F. Cascading polymer macro-debris upcycling and microparticle removal as an effective life cycle plastic pollution mitigation strategy. Environ. Sci. Technol. 2023, 57, 6506–6519. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Q.; Wang, F.; Xie, J.; Li, Y.; Li, J.; Wu, S. Emission behavior, environmental impact and priority-controlled pollutants assessment of volatile organic compounds (VOCs) during asphalt pavement construction based on laboratory experiment. J. Hazard. Mater. 2020, 398, 122904. [Google Scholar] [CrossRef]
- Grosjean, D.; Seinfeld, J.H. Parameterization of the formation potential of secondary organic aerosols. Atmos. Environ. 1989, 23, 1733–1747. [Google Scholar] [CrossRef]
- Grosjean, D. In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality. Atmos. Environ. Part A Gen. Top. 1992, 26, 953–963. [Google Scholar] [CrossRef]
- Carter, W.P. Updated Maximum Incremental Reactivity Scale and Hydrocarbon Bin Reactivities for Regulatory Applications; California Air Resources Board: Sacramento, CA, USA, 2009; Volume 339. [Google Scholar]
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Gao, Z.; Hu, G.; Wang, H.; Zhu, B. Characterization and assessment of volatile organic compounds (VOCs) emissions from the typical food manufactures in Jiangsu province, China. Atmos. Pollut. Res. 2019, 10, 571–579. [Google Scholar] [CrossRef]
- Yan, Y.; Peng, L.; Li, R.; Li, Y.; Li, L.; Bai, H. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China. Environ. Pollut. 2017, 223, 295–304. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Dong, M.; Li, W.; Gao, X.; Ye, R.; Zhang, D. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan. Atmos. Environ. 2018, 182, 234–241. [Google Scholar] [CrossRef]
- Huang, C.; Wang, H.L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J.A.; Zhou, M.; Jing, S.A.; Lu, J.; Chen, C.H. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China. Atmos. Chem. Phys. 2015, 15, 11081–11096. [Google Scholar] [CrossRef]
- Na, K.; Song, C.; Cockeriii, D. Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water. Atmos. Environ. 2006, 40, 1889–1900. [Google Scholar] [CrossRef]
- Sato, K.; Nakao, S.; Clark, C.H.; Qi, L.; Cocker Iii, D.R. Secondary organic aerosol formation from the photooxidation of isoprene, 1,3-butadiene, and 2,3-dimethyl-1,3-butadiene under high NOx conditions. Atmos. Chem. Phys. 2011, 11, 7301–7317. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Chen, D.; Li, Q.; Thai, P.; Gong, D.; Li, Y.; Zhang, C.; Gu, Y.; Zhou, L.; et al. Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China. Sci. Total Environ. 2017, 584–585, 1162–1174. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Chen, N.; Niu, Z.; Zhang, Y.; Jiang, S.; Yan, Y.; Qi, S. Source apportionment of volatile organic compounds: Implications to reactivity, ozone formation, and secondary organic aerosol potential. Atmos. Res. 2021, 249, 105344. [Google Scholar] [CrossRef]
- Derwent, R.G.; Jenkin, M.E.; Utembe, S.R.; Shallcross, D.E.; Murrells, T.P.; Passant, N.R. Secondary organic aerosol formation from a large number of reactive man-made organic compounds. Sci. Total Environ. 2010, 408, 3374–3381. [Google Scholar] [CrossRef]
- Li, H.; Jia, M.; Zhang, X.; Wang, Z.; Liu, Y.; Yang, J.; Yang, B.; Sun, Y.; Wang, H.; Ma, H. Laboratory Investigation on Fumes Generated by Different Modified Asphalt Binders. Transp. Res. Part D-Transp. Environ. 2023, 121, 103828. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Huang, S.; Yuan, H. Study on asphalt volatile organic compounds emission reduction: A state-of-the-art review. J. Clean. Prod. 2021, 318, 128596. [Google Scholar] [CrossRef]
- Cui, P.Q.; Wu, S.P.; Xiao, Y.; Zhang, H.H. Experimental study on the reduction of fumes emissions in asphalt by different additives. Mater. Res. Innov. 2015, 19, S1-158–S151-161. [Google Scholar] [CrossRef]
- Xie, J.; Ding, Z.; Luo, H.; Li, S.; He, W.; Zhao, X.; Ma, Y. Study on high-temperature emission behaviors of crumb rubber modified asphalt: Experimental analysis and molecular simulation approach. J. Clean. Prod. 2024, 478, 143977. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Wan, L.; Wu, S.; Zhao, Y.; Chen, D.; Fan, Y. Effect of recycled agricultural waste on fume emission and physicochemical properties of crumb rubber modified asphalt. Constr. Build. Mater. 2024, 438, 137093. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Jia, M.; Du, Q. Emission Risk and Inhibition Technology of Asphalt Fume from Crumb Rubber Modified Asphalt. Sustainability 2024, 16, 8840. [Google Scholar] [CrossRef]
- Betancur, M.; Martínez, J.D.; Murillo, R. Production of activated carbon by waste tire thermochemical degradation with CO2. J. Hazard. Mater. 2009, 168, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Feng, Z.; Liu, H.; Ahmed, A.T.; Zhang, M.; Zhao, G.; Guo, P.; Sheng, Y. Performance and inorganic fume emission reduction of desulfurized rubber powder/styrene–butadiene–styrene composite modified asphalt and its mixture. J. Clean. Prod. 2022, 364, 132690. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, M.; Li, J.; Lin, F.; Ma, W.; Yan, B.; Chen, G. Transformation of nitrogen, sulfur and chlorine during waste tire pyrolysis. J. Anal. Appl. Pyrolysis 2021, 153, 104987. [Google Scholar] [CrossRef]
- Tozzi, K.A.; Canto, L.B.; Scuracchio, C.H. Reclaiming of Vulcanized Rubber Foam Waste from the Shoe Industry Through Solid-state Shear Extrusion and Compounding with SBR. Macromol. Symp. 2020, 394, 2000094. [Google Scholar] [CrossRef]
- Zhou, T.; Li, L.; Liu, R.; Yu, F.; Dong, Z. Thermal effects on rheological characteristics and its evolution mechanism of bio-modified rubberized asphalt for sustainable road system: A focus on rubber particle size. J. Clean. Prod. 2024, 452, 142168. [Google Scholar] [CrossRef]
- Borinelli, J.B.; Portillo-Estrada, M.; Costa, J.O.; Pajares, A.; Blom, J.; Hernando, D.; Vuye, C. Emission reduction agents: A solution to inhibit the emission of harmful volatile organic compounds from crumb rubber modified bitumen. Constr. Build. Mater. 2024, 411, 134455. [Google Scholar] [CrossRef]
- Urban, P.L. Quantitative mass spectrometry: An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150382. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.H.; Chang, S.H.; Huang, C.H.; Huang, H.C.; Chang, M.B. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption. Chemosphere 2006, 64, 1489–1498. [Google Scholar] [CrossRef]
- Li, S.; Liu, Q.; Wang, H.; Wang, J.; He, L.; Wu, S. Effect of kaolin and sepiolite on fume emissions of rubber modified asphalt. Constr. Build. Mater. 2024, 416, 135276. [Google Scholar] [CrossRef]
NO. | Test Item | Test Result | |
---|---|---|---|
ACR | NCR | ||
1 | Relative density | 1.18 | 1.17 |
2 | Ash content/% | 5.40 | 6 |
3 | Acetone extract content/% | 13.40 | 11 |
4 | Rubber hydrocarbon content/% | 53 | 51 |
5 | Carbon black content/% | 30.60 | 30 |
Mesh | 30 | 40 | 50 | 60 | 70 | 80 | >80 |
---|---|---|---|---|---|---|---|
ACR (%) | 3.1 | 47.6 | 16.1 | 5.7 | 12.4 | 5.1 | 8.7 |
NCR (%) | 10.3 | 42.2 | 15.9 | 5.4 | 11.5 | 4.3 | 8.5 |
NO. | Label | Description |
---|---|---|
1 | BA | 70# base asphalt |
2 | SBS | 70# base asphalt + 4 wt.% SBS |
3 | SA10 | 70# base asphalt + 2 wt.% SBS + 10 wt.% ACR |
4 | SA15 | 70# base asphalt + 2 wt.% SBS + 15 wt.% ACR |
5 | SA20 | 70# base asphalt + 2 wt.% SBS + 20 wt.% ACR |
6 | SN15 | 70# base asphalt + 2 wt.% SBS + 15 wt.% NCR |
7 | SN10 | 70# base asphalt + 2 wt.% SBS + 10 wt.% NCR |
8 | N10 | 70# base asphalt + 10 wt.% NCR |
9 | N15 | 70# base asphalt + 15 wt.% NCR |
10 | N20 | 70# base asphalt + 20 wt.% NCR |
11 | N15W1 | 70# base asphalt + 15 wt.% NCR + 0.5 wt.% W1 |
12 | N15W2 | 70# base asphalt + 15 wt.% NCR + 0.5 wt.% W2 |
13 | N15D1 | 70# base asphalt + 15 wt.% NCR + 1 wt.% deodorizer |
14 | N15D2 | 70# base asphalt + 15 wt.% NCR + 2 wt.% deodorizer |
15 | N15D3 | 70# base asphalt + 15 wt.% NCR + 3 wt.% deodorizer |
16 | A10 | 70# base asphalt + 10 wt.% ACR |
17 | A15 | 70# base asphalt + 15 wt.% ACR |
18 | A20 | 70# base asphalt + 20 wt.% ACR |
Group | Total Concentration (mg/m3) | HKE (mg/m3) | HKA (μg/m3) | ARHs (mg/m3) | ARHD (μg/m3) |
---|---|---|---|---|---|
BA | 1.4 | 0.5 | 20.2 | 0.8 | 0.0 |
SBS | 2.9 | 1.4 | 0.0 | 1.5 | 0.0 |
SA10 | 1.3 | 0.5 | 3.0 | 0.8 | 0.0 |
SA15 | 2.0 | 0.4 | 2.5 | 1.6 | 0.0 |
SA20 | 3.1 | 2.7 | 7.2 | 0.4 | 0.0 |
SN15 | 8.1 | 3.0 | 1.1 | 5.1 | 0.0 |
SN10 | 7.3 | 2.4 | 1.9 | 4.9 | 0.0 |
N10 | 3.2 | 1.5 | 0.0 | 1.7 | 0.0 |
N15 | 5.5 | 3.2 | 7.2 | 2.3 | 7.2 |
N20 | 3.9 | 2.2 | 6.9 | 1.7 | 3.9 |
N15W1 | 1.5 | 0.7 | 16.4 | 0.7 | 0.0 |
N15W2 | 5.2 | 1.8 | 11.8 | 3.5 | 0.0 |
N15D1 | 3.6 | 1.9 | 0.0 | 1.7 | 0.0 |
N15D2 | 6.4 | 2.6 | 15.8 | 3.7 | 0.0 |
N15D3 | 5.8 | 2.0 | 2.9 | 3.8 | 0.0 |
A10 | 6.9 | 2.6 | 0.0 | 4.2 | 2.6 |
A15 | 6.7 | 5.4 | 13.9 | 1.4 | 0.0 |
A20 | 4.6 | 3.5 | 0.0 | 1.1 | 0.0 |
Group | >10% Percent (%) | >10% Number | 1%–10% Number | <1% Number |
---|---|---|---|---|
BA | 83.9 | 3 | 5 | 1 |
SBS | 71.6 | 3 | 4 | 1 |
SA10 | 83.1 | 3 | 5 | 1 |
SA15 | 88.8 | 3 | 3 | 4 |
SA20 | 82.3 | 1 | 6 | 7 |
SN15 | 87.6 | 3 | 3 | 5 |
SN10 | 78.7 | 3 | 4 | 4 |
N10 | 55.6 | 2 | 8 | 0 |
N15 | 77.5 | 2 | 6 | 2 |
N20 | 75.5 | 2 | 5 | 4 |
N15W1 | 86.7 | 3 | 2 | 5 |
N15W2 | 81.8 | 3 | 6 | 3 |
N15D1 | 67.5 | 2 | 7 | 2 |
N15D2 | 82.3 | 3 | 4 | 5 |
N15D3 | 81.3 | 3 | 4 | 5 |
A10 | 67.9 | 3 | 7 | 2 |
A15 | 79.4 | 1 | 5 | 2 |
A20 | 91.2 | 2 | 3 | 2 |
Serial No. | Compound | Contribution Value | Serial No. | Compound | Contribution Value | ||
---|---|---|---|---|---|---|---|
SOA/% | O3 | SOA | O3 | ||||
1 | 1,1-dichloroethylene | N | 1.7 | 11 | tetrachloroethene | N | 3.1 × 10−2 |
2 | chloropropene | N | 12.22 | 12 | chlorobenzene | N | 0.32 |
3 | methylene chloride | N | 1.87 × 10−2 | 13 | ethylbenzene | 5.4 | 3.04 |
4 | cis-1,2-dichloroethene | N | 1.79 | 14 | p,m-xylene | 3.15 | 9.75 |
5 | chloroform | N | 0.03 | 15 | styrene | 5.7 | 1.73 |
6 | 1,2-dichloroethane | N | 0.21 | 16 | o-toluene | 5 | 7.64 |
7 | benzene | 2.6 | 0.72 | 17 | 4-ethyltoluene | 2.5 | 4.44 |
8 | carbon tetrachloride | N | 0 | 18 | 1,3,5-triethyltoluene | 2.9 | 11.76 |
9 | toluene | 5.4 | 4 | 19 | 1,2,4-triethyltoluene | 2 | 8.87 |
10 | 1,1,2-trichloroethane | N | 8.6 × 10−2 | 20 | 1,2,4-trichlorobenzene | N | N |
No. | Name | Carcinogen Risk |
---|---|---|
1 | Benzene | IARC 1 |
2 | 1,2-dichloroethane | IARC 1 |
3 | Trichloroethylene | IARC 1 |
4 | Tetrachloroethylene | IARC 2A |
5 | Methylene chloride | IARC 2A |
6 | Styrene | IARC 2A |
7 | Carbon tetrachloride | IARC 2B |
8 | 1,1–Dichloroethylene | IARC 2B |
9 | Chloroform | IARC 2B |
10 | Ethylbenzene | IARC 2B |
System Type | Structural Characteristics | VOC Emission Mechanism | Key Difference Symbols |
---|---|---|---|
Non-activated CR-modified asphalt | Dense crosslink network (intact S–S/C–S bonds) | 1. Physical volatility: Light fractions escape through gaps (★★→↑↑) | ★★: Floating light fractions ╳╳: Volatilized VOCs ↑↑: Emission direction |
Limited swelling (<120%) | 2. Chemical decomposition: Additive release (╳╳) | ||
Gaps exist in the asphalt matrix | 3. High volatility (gaps act as emission channels) | ||
Activated CR-modified asphalt | Porous sponge-like structure (broken crosslinks) | 1. Adsorption: Porous structure traps light fractions (▒▒▒) | ▒▒▒: Adsorbed fractions ║║: Capillary retention └┘: Structural collapse |
High swelling (200%–300%) | 2. Capillary retention: Restricts light fraction escape (║║) | ||
Capillary adsorption effect | 3. Over-activation: Structural collapse leads to desorption (└┘→↑↑) | ||
Non-activated CR/SBS combined modified asphalt | CR agglomerates into “islands” | 1. Gaps act as VOC tunnels (╱╱╱→╳╳) | ╱╱╱: Gap channels ╳╳: VOC emissions |
Fragmented SBS network | 2. SBS-enhanced emission (additive release) | ||
Obvious phase separation with gaps | 3. Low SBS (2%) causes network discontinuity, failing to contain emissions | ||
Activated CR/SBS combined modified asphalt | Activated CR and SBS form an interpenetrating continuous network | 1. Synergistic suppression: Physical adsorption + chemical bonding (–SH/SBS binding) + network encapsulation | |
Triple suppression mechanism (adsorption, bonding, encapsulation) | 2. VOCs diffusion reduced by 40%–60% | ||
Good high-temperature stability | 3. Uniform heat distribution and stable structure at high temperatures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Zhao, H.; Zhang, D.; Zhang, P.; Ding, Y.; Liu, Y.; Su, C.; Han, Q.; Li, Y. Study on the Volatile Organic Compound Emission Characteristics of Crumb Rubber-Modified Asphalt. Coatings 2025, 15, 1043. https://doi.org/10.3390/coatings15091043
Feng H, Zhao H, Zhang D, Zhang P, Ding Y, Liu Y, Su C, Han Q, Li Y. Study on the Volatile Organic Compound Emission Characteristics of Crumb Rubber-Modified Asphalt. Coatings. 2025; 15(9):1043. https://doi.org/10.3390/coatings15091043
Chicago/Turabian StyleFeng, Hu, Haisheng Zhao, Dongfang Zhang, Peiyu Zhang, Yindong Ding, Yanping Liu, Chunhua Su, Qingjun Han, and Yiran Li. 2025. "Study on the Volatile Organic Compound Emission Characteristics of Crumb Rubber-Modified Asphalt" Coatings 15, no. 9: 1043. https://doi.org/10.3390/coatings15091043
APA StyleFeng, H., Zhao, H., Zhang, D., Zhang, P., Ding, Y., Liu, Y., Su, C., Han, Q., & Li, Y. (2025). Study on the Volatile Organic Compound Emission Characteristics of Crumb Rubber-Modified Asphalt. Coatings, 15(9), 1043. https://doi.org/10.3390/coatings15091043