Development of Aggregate Skeleton–Cementitious Paste-Coating Pervious Concrete
Abstract
1. Introduction
2. Research Protocol
2.1. Raw Materials
2.2. Process Performed
2.3. Mix Proportion
2.4. Production of ACPC
2.5. Test Methods
2.5.1. Aggregate Packing Density
2.5.2. Cementitious Paste Flowability
2.5.3. Permeability
2.5.4. Compressive Strength
3. Experimental Results
3.1. Feasibility of Aggregate Skeleton Vibration on ACPC Production
3.2. Feasibility of Mortar Coating on ACPC Production
3.3. Effect of Cementitious Paste Flowability on ACPC Production
3.4. Effect of Void Ratio on ACPC Production
4. Analysis of Key Influencing Factors of Permeability of ACPC
5. Analysis of Key Influencing Factors of the Strength of ACPC
5.1. Effect of Designed Void Ratio
5.2. Effect of Water/Cement Ratio
5.3. Effect of Sand Ratio
6. Optimum Sand Ratio to Achieve Concurrently Satisfactory Permeability and Strength
7. Discussion
8. Conclusions
- The pervious concrete was successfully produced by coating cementitious paste onto the aggregate skeleton method. When sand is adopted to produce ACPC, vibration of the aggregate skeleton and coating mortar onto the coarse aggregate skeleton should not be applied.
- A too-high w/c ratio (above 0.23 for the mix parameters in this study) or too-low void ratio (above 28.13% for the mix parameters in this study) resulted in a hardened cementitious layer that sealed the bottom of ACPC and blocked the path of the vertical permeability.
- In contrast to the effect of w/c ratio on conventional concrete, a higher w/c ratio generally resulted in a higher strength of ACPC because the paste could more easily infiltrate into the interstitial voids between aggregate and better bond the aggregate skeleton together.
- Compared to the mix without sand, the addition of a small amount of sand increased both the permeability and strength. The reason for the increase in permeability was the suitable ball-bearing effect to push apart the coarse aggregate and form a continuous flow channel, and the reason for the increase in strength was the filling effect without excessively weakening the bond between the cementitious paste and aggregate skeleton. The optimum sand ratio to achieve the highest vertical permeability and strength was 0.05.
- With the optimum sand ratio of 0.05, the ACPC owned concurrently satisfactory permeability (permeability coefficient ≥ grade K2) and acceptable strength (compressive strength ≥ 5 MPa).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, X.L.; Tang, Y.Z.; Li, Y.; Wang, Q.S.; Zuo, J.; Song, Z.L. Environmental and economic impacts assessment of concrete pavement brick and permeable brick production process—A case study in China. J. Clean. Prod. 2018, 171, 198–208. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. Guiding Opinions of the General Office of the State Council on Promoting the Construction of Sponge Cities; State Council Document No. 75; General Office of the State Council of the People’s Republic of China: Beijing, China, 2015. Available online: https://www.waizi.org.cn/law/6860.html (accessed on 1 August 2025).
- Singh, B.S.; Murugan, M. A review of factors influencing performance of pervious concrete. Gradevinar 2021, 73, 1017–1030. [Google Scholar] [CrossRef]
- Chen, J.J.; Ng, P.L.; Duan, D.H.; Guan, G.X.; Wang, J. Grouted dense skeleton concrete: Development and performance influence mechanism. Case Stud. Constr. Mater. 2025, 23, e04999. [Google Scholar] [CrossRef]
- Mostafa, A.; Alireza, Y.; Mojtaba, K.T.; Hamed, R. A comprehensive review on pervious concrete. Constr. Build. Mater. 2023, 407, 133308. [Google Scholar] [CrossRef]
- Guan, X.; Wang, J.Y.; Xiao, F.P. Sponge city strategy and application of pavement materials in sponge city. J. Clean. Prod. 2021, 303, 127022. [Google Scholar] [CrossRef]
- Liu, W.; Chen, J.; Li, H.T.; Zhu, S.G.; Duan, Z. Assessing carbon emission impacts of sponge city development: Insights from runoff reduction analysis. Water Sci. Technol. 2025, 91, 923–945. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.F.; Xu, C.Q.; Yin, D.K.; Xu, J.X.; Wu, Y.Q.; Jia, H.F. Environmental and economic cost-benefit comparison of sponge city construction in different urban functional regions. J. Environ. Manag. 2022, 304, 114230. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y.; Zhang, C.; Hu, R.; Zhang, H.Y.; Li, B.X.; Zhao, Q.L. Valorization of construction waste materials for pavements of sponge cities: A review. Constr. Build. Mater. 2022, 356, 129247. [Google Scholar] [CrossRef]
- Khaled, S.; Sofiane, A.; Evelyne, T. State of the art on the mechanical properties of pervious concrete. Eur. J. Environ. Civ. Eng. 2022, 26, 7727–7755. [Google Scholar] [CrossRef]
- Yang, Z.H.; Xu, Y.D.; Cai, X.J.; Wu, J.T.; Wang, J.L. Studying properties of pervious concrete containing recycled aggregate loaded with TiO2/LDHs and its liquid pollutant purification. Constr. Build. Mater. 2023, 406, 133398. [Google Scholar] [CrossRef]
- Sandoval, F.B.S.; Ricardo, P. Sustainable aggregate impact on pervious concrete abrasion resistance. Results Eng. 2023, 20, 101384. [Google Scholar] [CrossRef]
- Oskar, M.; Marzena, K.; Mikalaj, M.; Tadeusz, B.; Salem, A.K. Influence of the addition of recycled aggregates and polymer fibers on the properties of pervious concrete. Materials 2023, 16, 5222. [Google Scholar] [CrossRef]
- Zhou, J.L.; Zheng, M.L.; Zhan, Q.W.; Zhou, L.B.; Zhang, Y.S.; Wang, Y.Q. Study on mesostructure and stress strain characteristics of pervious concrete with different aggregate sizes. Constr. Build. Mater. 2023, 397, 132322. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Pan, J.; Easa, S.; Fu, T.F.; Liu, W.D.; Qiu, R.H. Utilization of copper slag waste in alkali-activated metakaolin pervious concrete. J. Build. Eng. 2023, 76, 107246. [Google Scholar] [CrossRef]
- El-Hilal, E.H.; Peiman, K.; Davoud, T.; Abdulkader, E.M.; Sakenian, D.R. Synergic effect of recycled aggregates, waste glass, and slag on the properties of pervious concrete. Dev. Built Environ. 2023, 15, 100189. [Google Scholar] [CrossRef]
- Huang, J.L.; Luo, Z.B.; Khan, E.B.M. Impact of aggregate type and size and mineral admixtures on the properties of pervious concrete: An experimental investigation. Constr. Build. Mater. 2020, 265, 120759. [Google Scholar] [CrossRef]
- Carmichael, M.J.; Arulraj, G.P.; Meyyappan, P.L. Effect of partial replacement of cement with nano fly ash on permeable concrete: A strength study. Mater. Today Proc. 2021, 43 Pt 2, 2109–2116. [Google Scholar] [CrossRef]
- Subramaniam, D.N.; Sathiparan, N. Comparative study of fly ash and rice husk ash as cement replacement in pervious concrete: Mechanical characteristics and sustainability analysis. Int. J. Pavement Eng. 2023, 24, 2075867. [Google Scholar] [CrossRef]
- Fan, Y.; Guo, J.Y.; Zheng, L.; Huang, Y.B. Enhancing both strength and permeability of pervious concrete by optimizing pore structure: An experimental study. Struct. Concr. 2023, 24, 6251–6269. [Google Scholar] [CrossRef]
- Claudino, G.O.; Rodrigues, G.G.O.; Rohden, A.B.; Mesquita, E.F.T.; Garcez, M.R. Mix design for pervious concrete based on the optimization of cement paste and granular skeleton to balance mechanical strength and permeability. Constr. Build. Mater. 2022, 347, 128620. [Google Scholar] [CrossRef]
- Ramírez, W.; Mayacela, M.; Contreras, L.; Shambi, A.; Ramírez, F.; Chacón, J. Mechanical properties of permeable concrete reinforced with polypropylene fibers for different water-cement ratios. Buildings 2024, 14, 2935. [Google Scholar] [CrossRef]
- Rodrigo, V.; Diana, S.; Carlos, E. Influence of nanosilica and polypropylene fibers on the permeability, compressive and flexural strength of pervious concrete. E3S Web Conf. 2024, 586, 04001. [Google Scholar] [CrossRef]
- Zhu, Y.C. Effect of mix ratio on strength and porosity of permeable concrete. Shanxi Archit. 2023, 49, 115–118. (In Chinese) [Google Scholar] [CrossRef]
- Dong, X.Y.; Wu, D.; Xiao, X.C.; Lu, H.T.; Ding, X. A study on the influence of aggregate shape on the aggregate void ratio and stress-strain performance of pervious concrete (PC). Dev. Built Environ. 2025, 23, 100704. [Google Scholar] [CrossRef]
- Geng, H.N.; Xu, Q.; Duraman, S.B.; Li, Q. Effect of rheology of fresh paste on the pore structure and properties of pervious concrete based on the high fluidity alkali-activated slag. Crystals 2021, 11, 593. [Google Scholar] [CrossRef]
- Aleksandr, K.; Larisa, R.; Iakov, V.; Iurii, K.; Viktors, H.; Sahmenko, G. Recycling of rice husks ash for the preparation of resistant, lightweight and environment-friendly fired bricks. Constr. Build. Mater. 2021, 302, 124385. [Google Scholar] [CrossRef]
- Qiu, X.Y.; Huang, D.H.; Song, Y.T.; Chen, Y.; He, S.Y.; Liu, J.J. Study on influencing factors of permeable concrete performance. Shanxi Archit. 2024, 50, 9–13. (In Chinese) [Google Scholar] [CrossRef]
- Xu, C.Y.; Li, Q.Y.; Wang, P.H.; Fan, Q.Q.; Kong, Z.; Wang, L.; Yue, G.B.; Zheng, S.D.; Shao, C.H.; Guo, Y.X. Theoretical porosity design, mechanical properties, and durability of large-pore sandy recycled concrete. Case Stud. Constr. Mater. 2024, 21, e03655. [Google Scholar] [CrossRef]
- Hiroyoshi, I.; Naoya, K.; Masuhiro, B.; Eric, B.W.; Akira, H. Effects of the shape, size, and surface roughness of glass coarse aggregate on the mechanical properties of two-stage concrete. Constr. Build. Mater. 2024, 411, 134296. [Google Scholar] [CrossRef]
- Kaplan, G.; Öz, A.; Bayrak, B.; Aydın, A.C. The effect of geopolymer slurries with clinker aggregates and marble waste powder on embodied energy and high-temperature resistance in prepacked concrete: ANFIS-based prediction model. J. Build. Eng. 2023, 67, 105987. [Google Scholar] [CrossRef]
- Fei, S.; Zhang, S.M.; Sun, X.C.; Fan, G.X.; Diao, Y.H.; Duan, X.F.; Long, Q.; Wang, H. Mechanical performance and pore characteristics of pervious concrete. Case Stud. Constr. Mater. 2024, 21, e03674. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Zhu, B.L.; Yang, S.H.; Tong, B.Q. Design of concrete mix proportion based on particle packing voidage and test research on compressive strength and elastic modulus of concrete. Materials 2021, 14, 623. [Google Scholar] [CrossRef]
- Wei, H.F.; Yan, L.X.; Lu, C.F.; Weng, Z.H.; Ye, Y.; Lu, C.H.; Zhou, Q.S. Effects of mixture proportions and molding method on the performance of pervious recycled aggregate concrete. Materials 2024, 17, 5138. [Google Scholar] [CrossRef]
- Chen, J.J.; Guan, G.X. Production of sustainable and high flexural strength concrete through paste replacement and addition of fibre. Constr. Build. Mater. 2025, 492, 143090. [Google Scholar] [CrossRef]
- Chen, J.J.; Guan, G.X. Addition of superfine natural zeolite to improve rheological properties of self-consolidating concrete. Powder Technol. 2025, 456, 120868. [Google Scholar] [CrossRef]
- Duan, D.H.; Chen, J.J.; Wang, W.X. Optimization of coarse aggregate size distribution for preplaced aggregate cement paste coating concrete. Coatings 2025, 15, 200. [Google Scholar] [CrossRef]
- BS 812-2; Testing Aggregates: Part 2. Methods of Determination of Density. British Standards Institution: London, UK, 1995.
- Khan, W.A.; Kumar, S. An investigation of the rheological parameters of slurry composed of ordinary Portland cement, Portland pozzolana cement and Portland slag cement. J. Struct. Integr. Maint. 2024, 9, 2415731. [Google Scholar] [CrossRef]
- Luo, Y.P.; Lv, Y.R.; Wang, D.F.; Jiang, Z.H.; Xue, G.B. The influence of coarse aggregate gradation on the mechanical properties, durability, and plantability of geopolymer pervious concrete. Constr. Build. Mater. 2023, 382, 131246. [Google Scholar] [CrossRef]
- Liu, H.B.; Zhou, S.; Wei, H.B.; Li, W.J.; Xiu, R.; Zhu, B. Mechanical properties, permeability and freeze-thaw durability of low sand rate pervious concrete. J. Phys. Conf. Ser. 2021, 1765, 012022. [Google Scholar] [CrossRef]
- Song, H.; Fan, S.J.; Wan, K.X.; Yao, J.W.; Li, Y.G. Balancing mechanical and permeability properties of pervious concrete through inter-aggregate pore structure optimization. J. Build. Eng. 2025, 106, 112537. [Google Scholar] [CrossRef]
- Li, H.; Yang, J.; Yu, X.Q.; Zhang, Y.; Zhang, L. Permeability prediction of pervious concrete based on mix proportions and pore characteristics. Constr. Build. Mater. 2023, 395, 132247. [Google Scholar] [CrossRef]
- Daukšys, M.; Dunauskas, A.; Juočiūnas, S. Effect of coarse aggregate characteristics on the permeability properties of pervious concrete. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1276, 012004. [Google Scholar] [CrossRef]
- Zhu, H.T.; Wen, C.C.; Wang, Z.Q.; Li, L. Study on the permeability of recycled aggregate pervious concrete with fibers. Materials 2020, 13, 321. [Google Scholar] [CrossRef]
- Noor, M.N.; Yusaini, Y.H.; Patah, D.; Dasar, A.; Irmawaty, R. The effect of utilising coal ash as substitutes for cement and sand on compressive strength and water permeability of concrete. IOP Conf. Ser. Earth Environ. Sci. 2025, 1453, 012006. [Google Scholar] [CrossRef]
- Xu, L.N.; Ding, X.; Niu, L.; Huang, Z.F.; Sun, S. Experimental Study on the mechanical properties and influencing factors of glass fiber-reinforced permeable concrete. Materials 2023, 16, 5970. [Google Scholar] [CrossRef]
- Lin, L.; Xu, J.J.; Yuan, J.L.; Yu, Y. Compressive strength and elastic modulus of RBAC: An analysis of existing data and an artificial intelligence based prediction. Case Stud. Constr. Mater. 2023, 18, e02184. [Google Scholar] [CrossRef]
- LI, W.Q.; Chen, F.; Ai, Z.L.; Zhang, C.; Wang, C.; Li, Y.; Zhang, Y.K. Influence of molding methods on the polymer pervious concrete. IOP Conf. Ser. Earth Environ. Sci. 2021, 643, 012024. [Google Scholar] [CrossRef]
- Hemalatha, T.; Ranjit, R.N.; Gopal, R. Pervious concrete for green walls. J. Archit. Eng. 2021, 27, 06021003. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Zhu, E.Y.; Wang, B.; Li, J.C.; Tong, Y.; Zhu, Z. Effect of porosity and pore size on the axial compressive properties of recycled aggregate concrete. Materials 2025, 18, 2830. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.K.; Miao, Y.C.; Xu, Z.P.; Wang, D.; Feng, L.; Kang, S.; Shu, Z.L.; Yang, Y.Y.; Liu, C.W. Research on pore distribution and creep properties of recycled plastic concrete. Constr. Build. Mater. 2025, 485, 141947. [Google Scholar] [CrossRef]
- Wahyu, K.; Sumaidi. Porosity analysis and compressive strength of normal concrete with synthetic wood waste filler additives. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1125, 012016. [Google Scholar] [CrossRef]
- Li, L.G.; Zhang, G.H.; Kwan, A.K.H. Exploring submarine 3D printing: Enhancing washout resistance and strength of 3D printable mortar. J. Mater. Civ. Eng. 2025, 37, 04025019. [Google Scholar] [CrossRef]
- Lin, S.H.; Lin, J.R.; Wu, Z.J.; Xiao, J.; Liu, L.F. Study on seismic performance of low yield point steel plate-ECC composite coupling beams. Structures 2025, 79, 109575. [Google Scholar] [CrossRef]
- Hassan, B.; Gao, X.J.; Liborio, C.; Alamgir, K.; Miao, R. Mechanical, durability, and microstructure characterization of pervious concrete incorporating polypropylene fibers and fly ash/silica fume. J. Compos. Sci. 2024, 8, 456. [Google Scholar] [CrossRef]
- Mendieta, S.C.; Diaz, G.J.J.; Lage, M.I. Relationships between density, porosity, compressive strength and permeability in porous concretes: Optimization of properties through control of the water-cement ratio and aggregate type. J. Build. Eng. 2024, 97, 110858. [Google Scholar] [CrossRef]
- Nataraja, M.C.; Srinivasamurthy, L.; Das, V.R.; Vineeth, L. Effect of aggregate gradation on the mechanical strengths and permeability properties of porous concrete. J. Eng. Appl. Sci. 2023, 70, 153. [Google Scholar] [CrossRef]
- Xiang, J.C.; Guo, Y.C.; Song, Y.Y.; Ren, B.Q.; Qiu, J.P. Carbon sequestration and microstructure of cemented paste backfill prepared with bio-wet carbonated basic oxygen furnace slag. Constr. Build. Mater. 2025, 486, 142019. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, M.; Zhu, L.; Lv, Y. Mix design and characteristics evaluation of high-performance concrete with full aeolian sand based on the packing density theory. Constr. Build. Mater. 2022, 349, 128814. [Google Scholar] [CrossRef]
- JC/T 2558; The Ministry of Industry and Information Technology of the People’s Republic of China; Permeable Concrete. China Building Materials Industry Press: Beijing, China, 2020.
- Yuan, H.Q.; Jiang, Y.B.; Cui, Y.L.; Zhou, H. Water permeability and compressive strength of recycled aggregate permeable concrete. Mater. Guide 2018, 32, 466–470. (In Chinese) [Google Scholar]
- Xin, Z.P.; Zhu, Y.G.; Xu, P.Z.; Ren, Y.N.; Zhang, Q.Y. Effect of fly ash and polypropylene fiber on the performance of recycled permeable concrete. Concrete 2023, 1, 73–77, 81. (In Chinese) [Google Scholar] [CrossRef]
- Sun, X.; Xu, H.; Qin, X.; Zhu, Y.; Jin, J. Cross-scale study on the interaction behaviour of municipal solid waste incineration fly ash-asphalt mortar: A macro-micro approach. Int. J. Pavement Eng. 2025, 26, 2469114. [Google Scholar] [CrossRef]
- Ying, J.W.; Chen, W.; Wang, W.B.; Tian, Z.Q.; Liang, L.Z.; Chen, B.X. Multiscale study on high-temperature mechanical behaviors and durability of recycled concrete reinforced by polycarboxylate-modified 3D porous graphene. Constr. Build. Mater. 2024, 450, 138676. [Google Scholar] [CrossRef]
Group | Mix No. | Mix Design Parameter | Mix Proportion (kg/m3) | Note | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Designed Void Ratio (%) | Water/ Cement Ratio | Sand Ratio | Coarse Aggregate Packing Density | Paste-Filling Ratio | Cement | Water | Sand | Coarse Aggregate | Water Reducer | |||
1 | ① | 10.50 | 0.30 | 0.10 | 0.625 | 0.72 | 422.6 | 130.9 | 155.0 | 1462.5 | 4.2 | 5 s aggregate skeleton vibration |
② | 10.50 | 0.30 | 0.10 | 0.625 | 0.72 | 422.6 | 130.9 | 155.0 | 1462.5 | 4.2 | 10 s aggregate skeleton vibration | |
2 | ③ | 10.50 | 0.30 | 0.10 | 0.625 | 0.72 | 422.6 | 130.9 | 155.0 | 1462.5 | 4.2 | - |
④ | 10.50 | 0.30 | 0.20 | 0.625 | 0.72 | 422.6 | 130.9 | 310.0 | 1300.0 | 4.2 | - | |
⑤ | 10.50 | 0.30 | 0.30 | 0.625 | 0.72 | 422.6 | 130.9 | 465.0 | 1137.5 | 2.6 | - | |
3 | ⑥ | 24.00 | 0.23 | 0.05 | 0.625 | 0.36 | 234.8 | 57.7 | 77.5 | 1543.8 | 2.3 | Coating mortar onto aggregate skeleton |
⑦ | 24.00 | 0.23 | 0.10 | 0.625 | 0.36 | 234.8 | 57.7 | 155.0 | 1462.5 | 2.3 | Coating mortar onto aggregate skeleton | |
4 | ⑧ | 10.50 | 0.23 | 0.10 | 0.625 | 0.72 | 422.6 | 115.4 | 155.0 | 1462.5 | 4.7 | - |
⑨ | 24.00 | 0.23 | 0.10 | 0.625 | 0.36 | 234.8 | 57.7 | 155.0 | 1462.5 | 2.3 | - | |
⑩ | 26.25 | 0.23 | 0.10 | 0.625 | 0.30 | 195.6 | 48.1 | 155.0 | 1462.5 | 2.0 | - | |
⑪ | 28.13 | 0.23 | 0.10 | 0.625 | 0.25 | 163.0 | 40.1 | 155.0 | 1462.5 | 1.6 | - | |
5 | ⑫ | 28.13 | 0.23 | 0.00 | 0.625 | 0.25 | 163.0 | 40.1 | 0.0 | 1625.0 | 1.6 | - |
⑬ | 28.13 | 0.25 | 0.00 | 0.625 | 0.25 | 163.0 | 42.9 | 0.0 | 1625.0 | 1.5 | - | |
⑭ | 28.13 | 0.28 | 0.00 | 0.625 | 0.25 | 146.7 | 45.5 | 0.0 | 1625.0 | 1.5 | - | |
⑮ | 28.13 | 0.30 | 0.00 | 0.625 | 0.25 | 139.7 | 47.8 | 0.0 | 1625.0 | 1.4 | - | |
⑯ | 28.13 | 0.34 | 0.00 | 0.625 | 0.25 | 133.4 | 49.8 | 0.0 | 1625.0 | 1.3 | - | |
6 | ⑰ | 28.13 | 0.23 | 0.00 | 0.625 | 0.25 | 163.0 | 40.1 | 0.0 | 1625.0 | 1.6 | - |
⑱ | 28.13 | 0.23 | 0.05 | 0.625 | 0.25 | 163.0 | 40.1 | 77.5 | 1543.8 | 1.6 | - | |
⑲ | 28.13 | 0.23 | 0.10 | 0.625 | 0.25 | 163.0 | 40.1 | 155.0 | 1462.5 | 1.6 | - | |
⑳ | 28.13 | 0.23 | 0.15 | 0.625 | 0.25 | 163.0 | 40.1 | 232.5 | 1381.3 | 1.6 | - |
w/c ratio sand ratio | 0.23 0 | 0.25 0 | 0.28 0 | 0.30 0 | 0.34 0 | 0.23 0.05 | 0.23 0.10 |
Flow spread (mm) | 363 | 385 | 425 | 450 | 475 | 415 | 398 |
Group | Mix No. | Compressive Strength (MPa) |
1 | ① | 24.22 |
② | 26.83 | |
2 | ③ | 24.22 |
④ | 22.23 | |
⑤ | 12.03 | |
3 | ⑥ | 11.35 |
⑦ | 7.82 | |
4 | ⑧ | 24.22 |
⑨ | 7.82 | |
⑩ | 4.70 | |
⑪ | 4.45 | |
5 | ⑫ | 3.77 |
⑬ | 2.51 | |
⑭ | 3.34 | |
⑮ | 7.53 | |
⑯ | 8.71 | |
6 | ⑰ | 3.77 |
⑱ | 5.54 | |
⑲ | 4.82 | |
⑳ | 3.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, W.; Chen, J.; Chen, T. Development of Aggregate Skeleton–Cementitious Paste-Coating Pervious Concrete. Coatings 2025, 15, 1013. https://doi.org/10.3390/coatings15091013
Zeng W, Chen J, Chen T. Development of Aggregate Skeleton–Cementitious Paste-Coating Pervious Concrete. Coatings. 2025; 15(9):1013. https://doi.org/10.3390/coatings15091013
Chicago/Turabian StyleZeng, Weixiong, Jiajian Chen, and Tianxiang Chen. 2025. "Development of Aggregate Skeleton–Cementitious Paste-Coating Pervious Concrete" Coatings 15, no. 9: 1013. https://doi.org/10.3390/coatings15091013
APA StyleZeng, W., Chen, J., & Chen, T. (2025). Development of Aggregate Skeleton–Cementitious Paste-Coating Pervious Concrete. Coatings, 15(9), 1013. https://doi.org/10.3390/coatings15091013