Recent Progress on the Healing Mechanisms of Self-Healing Superhydrophilic Surfaces
Abstract
1. Introduction
2. Thermodynamic Principle of Superhydrophilic Surfaces
- (1)
- When θ = 0°, the liquid completely spreads across the solid surface, achieving a full wetting state.
- (2)
- When 0° < θ < 90°, the liquid spreads across a finite contact area on the solid surface, presenting partial wetting state.
- (3)
- When 90° < θ < 180°, the liquid contracts into a bead-like shape on the surface the solid surface, exhibiting a non-wetting state.
- (4)
- When θ = 180°, the liquid forms a perfect sphere on the solid surface, demonstrating a perfect non-wetting state.
3. Self-Healing Mechanism of Superhydrophilic Surfaces
3.1. Composition Self-Healing
3.2. Structure Self-Healing
3.2.1. Extrinsic Type
3.2.2. Intrinsic Type
Electrostatic Interaction
Hydrogen Bond
Host–Guest Interaction
Metal–Ligand Interaction
Reversible Dynamic Covalent Bond
4. Self-Healing in Air and Water
4.1. Self-Healing in Air
4.2. Self-Healing in Water
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asha, A.B.; Chen, Y.J.; Narain, R. Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. Chem. Soc. Rev. 2021, 50, 11668–11683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, R.; Zheng, S.; Zhu, H.; Cao, M.; Li, M.; Hu, Y.; Long, L.; Feng, H.; Tang, C.Y. Hydrogel-embedded vertically aligned metal-organic framework nanosheet membrane for efficient water harvesting. Nat. Commun. 2024, 15, 9738. [Google Scholar] [CrossRef]
- Liu, M.; Wang, S.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 1–17. [Google Scholar] [CrossRef]
- Du, H.; Liu, F.; Wang, H. Bio-inspired robust superhydrophilic/underwater superoleophobic coating with lubrication, anti-crude oil fouling and anti-corrosion performances. J. Colloid Interface Sci. 2022, 616, 720–729. [Google Scholar] [CrossRef]
- Zhang, H.; Bu, X.; Li, W.; Cui, M.; Ji, X.; Tao, F.; Gai, L.; Jiang, H.; Liu, L.; Wang, Z. A Skin-Inspired Design Integrating Mechano–Chemical–Thermal Robustness into Superhydrophobic Coatings. Adv. Mater. 2022, 34, 2203792. [Google Scholar] [CrossRef]
- Wang, R.; Ma, W.; Zhao, J.; Guo, Z.; Cui, Y.; Zhu, Y.; Chen, H. Nanosecond laser etching for enhanced multi-scale layered micro-nano superhydrophilic 304 stainless steel surface. Opt. Laser Technol. 2024, 174, 110645. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, T.; Tan, Q.; Zuo, J.; Xu, S.; Nong, Y.; Wen, X.; Pi, P. A charged superhydrophilic-oleophobic anti-fouling sponges for rapid separation of O/W emulsions. Sep. Purif. Technol. 2024, 335, 126110. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, K.; Li, S.; Wang, Y.; Lei, L.; Zhu, M.; Zhuang, L.; Xu, Z. Interfacial amine-assisted electrodeposition of superhydrophilic/superaerophobic metal hydroxides for robust oxygen evolution catalysis. Sci. China Chem. 2025, 68, 2188–2195. [Google Scholar] [CrossRef]
- Young, T., III. An essay on the cohesion of fluids. R. Soc. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Wenzel, R.N.J.I.; Chemistry, E. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.; Baxter, S.J.T.O.T.F.S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, C.; Zuhlke, C.; Alexander, D.; Francisco, J.S.; Zeng, X.C. Turning a Superhydrophilic Surface Weakly Hydrophilic: Topological Wetting States. J. Am. Chem. Soc. 2020, 142, 18491–18502. [Google Scholar] [CrossRef]
- Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.; van Der Bruggen, B. Superhydrophilic and underwater superoleophobic membranes-A review of synthesis methods. Prog. Polym. Sci. 2019, 98, 101166. [Google Scholar] [CrossRef]
- Yan, H.; Yuanhao, W.; Hongxing, Y. TEOS/silane coupling agent composed double layers structure: A novel super-hydrophilic coating with controllable water contact angle value. Appl. Energy 2017, 185, 2209–2216. [Google Scholar] [CrossRef]
- Wang, J.; Pei, X.; Zhang, J.; Liu, S.; Li, Y.; Wang, C. Reversible switch of wettability of ZnO@stearic acid nanoarray through alternative irradiation and heat-treatment. Ceram. Int. 2021, 47, 9164–9168. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Z.; Zhu, X.; Xiao, X.; Pang, Y.; Tan, Q.; Liu, Y. A super-hydrophilic NH2-MIL-125 composite film with dopamine-modified graphene oxide is used for water treatment. New J. Chem. 2022, 46, 13303–13314. [Google Scholar] [CrossRef]
- Lim, C.S.; Kueh, T.C.; Soh, A.K.; Hung, Y.M. Engineered superhydrophilicity and superhydrophobicity of graphene-nanoplatelet coatings via thermal treatment. Powder Technol. 2020, 364, 88–97. [Google Scholar] [CrossRef]
- Bastami, H.; Grayeli, A.; Arman, A.; Matos, R.S.; Ferreira, N.S.; Da Fonseca Filho, H.D.; Ţălu, Ş. Microstructure of ZrO2 films: Hydrophilic properties and optical band gaps. Mater. Today Commun. 2025, 45, 112338. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, F.; Xu, J.; Zhao, Z.H.; Fu, J. Research Progress of Human Biomimetic Self-Healing Materials. Small 2024, 21, e2408199. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.A. Lubricating lipids in hydrogels. Science 2020, 370, 288–289. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Hao, D.; Li, P.; Yang, M.; Guo, X.; Ai, X.; Zhao, T.; Jiang, L. Setaria viridis-inspired hydrogels with multilevel structures for efficient all-day fresh water harvesting. J. Mater. Chem. A 2023, 11, 7702–7710. [Google Scholar] [CrossRef]
- Delesky, E.A.; Jones, R.J.; Cook, S.M.; Cameron, J.C.; Hubler, M.H.; Srubar, W.V. Hydrogel-assisted self-healing of biomineralized living building materials. J. Clean. Prod. 2023, 418, 138178. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, P.; Zang, R.; Fan, J.; Wang, S.; Wang, B.; Meng, J. Nacre-Inspired Mineralized Films with High Transparency and Mechanically Robust Underwater Superoleophobicity. Adv. Mater. 2020, 32, 1907413. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, S.; Wu, L. Self-Healing Underwater Superoleophobic and Antibiofouling Coatings Based on the Assembly of Hierarchical Microgel Spheres. ACS Nano 2016, 10, 1386–1394. [Google Scholar] [CrossRef]
- Xu, G.; Liu, P.; Pranantyo, D.; Neoh, K.-G.; Kang, E.-T. Dextran and Chitosan-Based Antifouling, Antimicrobial Adhesion, and Self-Polishing Multilayer Coatings from pH-Responsive Linkages-Enabled Layer-by-Layer Assembly. ACS Sustain. Chem. Eng. 2018, 6, 3916–3926. [Google Scholar] [CrossRef]
- Wang, D.; Liu, H.; Yang, J.; Zhou, S. Seawater-Induced Healable Underwater Superoleophobic Antifouling Coatings. ACS Appl. Mater. Interfaces 2019, 11, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Elashnikov, R.; Khrystonko, O.; Jilková, T.; Rimpelová, S.; Prchal, J.; Khalakhan, I.; Kolská, Z.; Švorčík, V.; Lyutakov, O. High-Strength Self-Healable Supercapacitor Based on Supramolecular Polymer Hydrogel with Upper Critical Solubility Temperature. Adv. Funct. Mater. 2024, 34, 2314420. [Google Scholar] [CrossRef]
- Zhao, B.Q.; He, X.L.; Li, W.J.; Zhang, H.; Liu, H.; Qiu, H.; Gu, P.; Chen, K.L. Multi-touch microcapsules/silicone-polyacrylate hybrid hydrogels with precise self-healing ability and their self-powered sensing applications in emergency rescue. Chem. Eng. J. 2024, 500, 157149. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.Y.; Cao, Z.L.; He, P.; Liu, Q.T.; Han, X.B.; Wan, Y. Preparation and application of novel microcapsules ruptured by microwave for self-healing concrete. Constr. Build. Mater. 2021, 304, 124616. [Google Scholar] [CrossRef]
- Fu, S.; Li, H.; Liu, H.; Zhao, Y.; Xu, Z. Self-healing superoleophobic and superhydrophilic fabrics for efficient oil/water separation. J. Polym. Eng. 2024, 44, 347–353. [Google Scholar] [CrossRef]
- Ni, Z.; Guo, Z.; Lin, Y.H. Synthesis and Self-Healing Mechanism of Self-Healing Epoxy Microcapsule Materials. Key Eng. Mater. 2020, 842, 3–9. [Google Scholar] [CrossRef]
- Ratwani, C.R.; Zhao, S.; Huang, Y.; Hadfield, M.; Kamali, A.R.; Abdelkader, A.M. Surface Modification of Transition Metal Dichalcogenide Nanosheets for Intrinsically Self-Healing Hydrogels with Enhanced Mechanical Properties. Small 2023, 19, 2207081. [Google Scholar] [CrossRef]
- Ribeiro, M.M.; Simões, M.; Vitorino, C.; Mascarenhas-Melo, F. Physical crosslinking of hydrogels: The potential of dynamic and reversible bonds in burn care. Coord. Chem. Rev. 2025, 542, 216868. [Google Scholar] [CrossRef]
- Li, B.; Li, C.; Yan, Z.; Yang, X.; Xiao, W.; Zhang, D.; Liu, Z.; Liao, X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int. J. Biol. Macromol. 2025, 287, 138323. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Shen, T.; Yang, J.; Cao, W.; Wei, J.; Li, W. Room-Temperature Intrinsic Self-Healing Materials: A review. Chem. Eng. J. 2024, 498, 155158. [Google Scholar] [CrossRef]
- Cheng, M.; Fu, Q.; Tan, B.; Ma, Y.; Fang, L.; Lu, C.; Xu, Z. Build a bridge from polymeric structure design to engineering application of self-healing coatings: A review. Prog. Org. Coat. 2022, 167, 106790. [Google Scholar] [CrossRef]
- Ikura, R.; Park, J.; Osaki, M.; Yamaguchi, H.; Harada, A.; Takashima, Y. Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Mater. 2022, 14, 10. [Google Scholar] [CrossRef]
- Sato, T.; Wassgren, J.; Nakamura, S.; Hozumi, A. Recent trends on anti-fogging treatments using self-healing hydrophilic/superhydrophilic materials. Mater. Lett. 2024, 368, 136681. [Google Scholar] [CrossRef]
- Liang, B.; Zhong, Z.; Jia, E.; Zhang, G.; Su, Z. Transparent and Scratch-Resistant Antifogging Coatings with Rapid Self-Healing Capability. ACS Appl. Mater. Interfaces 2019, 11, 30300–30307. [Google Scholar] [CrossRef]
- Fargher, H.A.; Sherbow, T.J.; Haley, M.M.; Johnson, D.W.; Pluth, M.D. C–H⋯S hydrogen bonding interactions. Chem. Soc. Rev. 2022, 51, 1454–1469. [Google Scholar] [CrossRef]
- Wang, W.; Lu, P.; Fan, Y.; Tian, L.; Niu, S.; Zhao, J.; Ren, L. A facile antifogging/frost-resistant coating with self-healing ability. Chem. Eng. J. 2019, 378, 122173. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Huang, J.; Mao, J.; Cheng, Y.; Teng, L.; Chen, Z.; Lai, Y. A multifunctional and environmentally-friendly method to fabricate superhydrophilic and self-healing coatings for sustainable antifogging. Chem. Eng. J. 2021, 409, 128228. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Tan, J.; Yu, X.; Sun, G.; You, B. Transparent Surfactant/Epoxy Composite Coatings with Self-Healing and Superhydrophilic Properties. Macromol. Mater. Eng. 2019, 304, 1800765. [Google Scholar] [CrossRef]
- Li, Y.B.; Wei, J.X.; Wang, J.; Wang, Y.Y.; Yu, P.S.; Chen, Y.; Zhang, Z.J. Covalent organic frameworks as superior adsorbents for the removal of toxic substances. Chem. Soc. Rev. 2025, 54, 2693–2725. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Chen, Z.; He, Y. Deciphering the Entropy-Driven Host–Guest Interactions within Single Covalent Organic Frameworks for Trapping of 131I–. Nano Lett. 2024, 24, 13861–13866. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Nie, Y.; Huang, Y.; Yang, Y.; Chen, H.; Zhang, X. Self-healing, adhesive, photothermal responsive, stretchable, and strain-sensitive supramolecular nanocomposite hydrogels based on host–guest interactions. Polym. Eng. Sci. 2024, 64, 5627–5636. [Google Scholar] [CrossRef]
- Guo, W.; Gao, X.; Ding, X.; Ding, P.; Han, Y.; Guo, Q.; Ma, Y.; Okoro, O.V.; Sun, Y.; Jiang, G.; et al. Self-adhesive and self-healing hydrogel dressings based on quaternary ammonium chitosan and host-guest interacted silk fibroin. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133145. [Google Scholar] [CrossRef]
- Zohreband, Z.; Adeli, M.; Zebardasti, A. Self-healable and flexible supramolecular gelatin/MoS2 hydrogels with molecular recognition properties. Int. J. Biol. Macromol. 2021, 182, 2048–2055. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Zuo, J.L. Self-Healing Polymers Based on Coordination Bonds. Adv. Mater. 2019, 32, 1903762. [Google Scholar] [CrossRef]
- Mugemana, C.; Grysan, P.; Dieden, R.; Ruch, D.; Bruns, N.; Dubois, P. Self-Healing Metallo-Supramolecular Amphiphilic Polymer Conetworks. Macromol. Chem. Phys. 2020, 221, 1900432. [Google Scholar] [CrossRef]
- Xu, X.; Jerca, V.V.; Hoogenboom, R. Self-Healing Metallo-Supramolecular Hydrogel Based on Specific Ni2+ Coordination Interactions of Poly(ethylene glycol) with Bistriazole Pyridine Ligands in the Main Chain. Macromol. Rapid Commun. 2020, 41, 1900457. [Google Scholar] [CrossRef]
- Pourbadiei, B.; Monghari, M.A.A.; Khorasani, H.M.; Pourjavadi, A. A light-responsive wound dressing hydrogel: Gelatin based self-healing interpenetrated network with metal-ligand interaction by ferric citrate. J. Photochem. Photobiol. B Biol. 2023, 245, 112750. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, C.; Yu, C.; Fei, G.; Wang, Z.; Xia, H. A Facile Strategy for Self-Healing Polyurethanes Containing Multiple Metal–Ligand Bonds. Macromol. Rapid Commun. 2018, 39, 1700678. [Google Scholar] [CrossRef]
- Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chem. Rev. 2021, 121, 1716–1745. [Google Scholar] [CrossRef]
- Yang, K.; Yang, J.; Chen, R.; Dong, Q.; Yang, H.; Gu, S.; Zhou, Y. Antibacterial hyaluronic acid hydrogels with enhanced self-healing properties via multiple dynamic bond crosslinking. Int. J. Biol. Macromol. 2024, 256, 128320. [Google Scholar] [CrossRef]
- Tran, V.T.; Mredha, M.T.I.; Na, J.Y.; Seon, J.-K.; Cui, J.; Jeon, I. Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability. Chem. Eng. J. 2020, 394, 124941. [Google Scholar] [CrossRef]
- Kang, C.; Guo, J.; Kiyingi, W.; Li, J.; Xue, P. A New Self-Healing Green Polymer Gel with Dynamic Networks for Flow Control in Harsh Reservoirs. Adv. Funct. Mater. 2024, 35, 2423892. [Google Scholar] [CrossRef]
- Jiang, X.; Zeng, F.; Yang, X.; Jian, C.; Zhang, L.; Yu, A.; Lu, A. Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy. Acta Biomater. 2022, 141, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Liu, Z.; Shen, Z.; Gong, H.; Jiang, Y.; Su, Y.; Zhou, J.; Li, Y. Ultrahard and Ultraflexible Supramolecular Hydrogel with Superenergy Dissipating Structure for Biomimetic Skin. ACS Appl. Mater. Interfaces 2024, 16, 70891–70905. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Zhou, M.; Fu, H. Study on mussel-inspired tough TA/PANI@CNCs nanocomposite hydrogels with superior self-healing and self-adhesive properties for strain sensors. Compos. Part B Eng. 2020, 201, 108356. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Wei, Q.; Wang, Y.; Li, M.; Li, D.; Zhang, L. A 3D printable, highly stretchable, self-healing hydrogel-based sensor based on polyvinyl alcohol/sodium tetraborate/sodium alginate for human motion monitoring. Int. J. Biol. Macromol. 2022, 219, 1216–1226. [Google Scholar] [CrossRef]
- Ji, N.; Luo, J.; Zhang, W.; Sun, J.; Wang, J.; Qin, C.; Zhuo, Q.; Dai, L. A Novel Polyvinyl Alcohol-Based Hydrogel with Ultra-Fast Self-Healing Ability and Excellent Stretchability Based on Multi Dynamic Covalent Bond Cross-Linking. Macromol. Mater. Eng. 2022, 308, 2200525. [Google Scholar] [CrossRef]
- Liu, C.; Mao, Y.; Jiang, L.; Hu, Q.; Zhang, Y.; Zhao, F.; Zhang, E.; Sun, X. Large strain, tissue-like and self-healing conductive double-network hydrogel for underwater information transmission. Chem. Eng. J. 2024, 482, 148863. [Google Scholar] [CrossRef]
- Tian, Z.; Luo, S.; Yue, S.; Li, Z.; Yang, D. Self-Powered and Self-Healing Underwater Sensors with Functions of Intelligent Drowning Warning and Rescuing by Using a Nonswelling Hydrogel. ACS Appl. Mater. Interfaces 2025, 17, 26055–26064. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; He, S.; Qin, Z.; Li, J.; Yao, F. Fast self-healing zwitterion nanocomposite hydrogel for underwater sensing. Compos. Commun. 2021, 26, 100784. [Google Scholar] [CrossRef]
- Li, M.; Han, X.; Fan, Z.; Zhang, Y.; Li, Q.; Xie, G. Autonomous ultrafast-self-healing hydrogel for application in multiple environments. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127669. [Google Scholar] [CrossRef]
- Shang, B.; Zhan, Y.; Chen, M.; Wu, L. NIR triggered healable underwater superoleophobic coating with exceptional anti-biofouling performance. Appl. Surf. Sci. 2020, 528, 146805. [Google Scholar] [CrossRef]
- Fu, R.; Guan, Y.; Xiao, C.; Fan, L.; Wang, Z.; Li, Y.; Yu, P.; Tu, L.; Tan, G.; Zhai, J.; et al. Tough and Highly Efficient Underwater Self-Repairing Hydrogels for Soft Electronics. Small Methods 2022, 6, 2101513. [Google Scholar] [CrossRef]
- Chen, W.-P.; Hao, D.-Z.; Hao, W.-J.; Guo, X.-L.; Jiang, L. Hydrogel with Ultrafast Self-Healing Property Both in Air and Underwater. ACS Appl. Mater. Interfaces 2017, 10, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Q.; Jia, F.; Gao, G.H. Underwater flexible mechanoreceptors constructed by anti-swelling self-healable hydrogel. Sci. China Mater. 2021, 64, 3069–3078. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Guan, M.; Li, H.; Guo, J.; Shi, H.; Li, S. Triple-defense design of multifunctional superhydrophilic surface with outstanding underwater superoleophobicity, anti-oil-fouling properties, and high transparency. J. Membr. Sci. 2024, 689, 122161. [Google Scholar] [CrossRef]
Type | Raw Materials | Types of Damage | Triggering Mechanism | Healing Time | Healing Efficiency | References |
---|---|---|---|---|---|---|
Self-healing microcapsules | CS, sodium tripolyphosphate, FS-60 | Abrasion | Heat distilled water to 100 °C after moistening | 30 min | Basically fully recovered | [30] |
Electrostatic interaction | AMP-NCPs, PVP | Severe damage of 20 microns | Placed in a humid environment | 36–48 h | >80% | [38] |
Electrostatic interaction and hydrogen bond | Sulfobetaine methacrylate and 2-hydroxyethyl methacrylate | Shallow grooves formed after scraping | Soak in deionized water for 2 s, then place in a room temperature environment | 2 min | 90% | [39] |
Hydrogen bond | PAA, CMC, and Fe (III) | Cut | Water vapor wetting | Within 1 min | Full restoration of transparency | [42] |
Epoxy resin, Triton X-100 | Scratches, cuts, and THF solution | Heat separately at 60 °C, 140 °C, and 100 °C | 3 min, 3 min, and 30 min | Basically restored to its original appearance | [43] | |
Host–guest interaction | β-Cyclodextrin, MoS2, and adamantyl segments | Cut | 30 °C | 10 min | Fully healed | [48] |
Metal–ligand interaction | Pyridine and Zinc (II)-based complexes | Scratch damage with a width of 10 ± 3 μm and a depth of 100 μm | Heat 120 °C | 16 h | Healed but with scars remaining | [50] |
2,6-diethynyl pyridine, PEG-diazide (L2), Ni2+ | Cut | Continuous contact | 2 min | Fully healed | [51] |
Main Ingredients | Types of Damage | Self-Healing Properties | Durability and Self-Healing Properties | Stability | References |
---|---|---|---|---|---|
SiO2@PDA@Ag particles | Scratch | NIR (2.00 W) irradiation for 15 s can almost completely heal | Can exist in strong acids, strong alkalis, or salt solutions of varying concentrations | The coating maintains stable hydrophilic and oil-repellent properties | [67] |
Acrylonitrile, acrylamide, methyl acrylate | Cut | Completely re-bonded after 60 min of contact, no scratches | Self-healing in air, underwater, and in seawater | All maintain stable high healing performance | [68] |
Agarose, PVA | Cut | Contact 10 s tensile stress recovery 94.7% | Ultrafast self-healing in air and underwater | Agarose networks improve the strength and stability of hydrogels | [69] |
Methacrylamide | Cut | Place in water and gently squeeze for 8 s. Once healed, both ends can withstand strong tensile forces. | Self-healing in deionized water, air, seawater, sweat, alkaline, and acidic aqueous solutions | Excellent healing efficiency in air and underwater but significantly reduced healing efficiency in seawater and acid–alkaline solutions | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, F. Recent Progress on the Healing Mechanisms of Self-Healing Superhydrophilic Surfaces. Coatings 2025, 15, 1006. https://doi.org/10.3390/coatings15091006
Liu Z, Liu F. Recent Progress on the Healing Mechanisms of Self-Healing Superhydrophilic Surfaces. Coatings. 2025; 15(9):1006. https://doi.org/10.3390/coatings15091006
Chicago/Turabian StyleLiu, Zhimeng, and Fatang Liu. 2025. "Recent Progress on the Healing Mechanisms of Self-Healing Superhydrophilic Surfaces" Coatings 15, no. 9: 1006. https://doi.org/10.3390/coatings15091006
APA StyleLiu, Z., & Liu, F. (2025). Recent Progress on the Healing Mechanisms of Self-Healing Superhydrophilic Surfaces. Coatings, 15(9), 1006. https://doi.org/10.3390/coatings15091006