Effect of Shellac–Rosin Microcapsules on the Self-Healing Properties of Waterborne Primer on Wood Surfaces
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Equipments
2.2. Microcapsule Preparation Method
2.3. Preparation Method for the Primer Film
2.4. Test and Characterization
2.4.1. Microscopic Morphological Characterization
2.4.2. Chemical Constituent Testing
2.4.3. Optical Performance Testing
2.4.4. Mechanical Performance Testing
2.4.5. Thermal-Aging-Resistance Testing
2.4.6. Self-Healing Performance Testing
2.4.7. Analysis of Variance (ANOVA)
3. Results and Discussion
3.1. Microscopic Morphological Analysis
3.2. Chemical Composition Analysis
3.3. Optical Performance Analysis
3.3.1. Color Difference
3.3.2. Glossiness
3.4. Mechanical Performance Analysis
3.5. Thermal-Aging-Resistance Performance Analysis
3.6. Self-Healing Performance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zelinka, S.L.; Altgen, M.; Emmerich, L.; Guigo, N.; Keplinger, T.; Kymäläinen, M.; Thybring, E.E.; Thygesen, L.G. Review of Wood Modification and Wood Functionalization Technologies. Forests 2022, 13, 1004. [Google Scholar] [CrossRef]
- Qi, Y.Q.; Zhou, Z.W.; Xu, R.; Dong, Y.T.; Zhang, Z.Q.; Liu, M.J. Effect of NaOH Pretreatment on Permeability and Surface Properties of Three Wood Species. ACS Omega 2023, 8, 40362–40374. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.Q.; Zhang, Z.Q.; Sun, Y.; Shen, L.M.; Han, J.L. Study on the Process Optimization of Peanut Coat Pigment Staining of Poplar Wood. Forests 2024, 15, 504. [Google Scholar] [CrossRef]
- Liu, C.; Xu, W. Effect of Coating Process on Properties of Two-Component Waterborne Polyurethane Coatings for Wood. Coatings 2022, 12, 1857. [Google Scholar] [CrossRef]
- Jamalabadi, M.Y.A.; Zabari, N.; Bratasz, L. Three-dimensional numerical and experimental study of fracture saturation in panel paintings. Wood Sci. Technol. 2021, 55, 1555–1576. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Xu, W. Surface Roughness of Wood Substrates after Grinding and Its Influence on the Modification Effect of Structural Color Layers. Forests 2023, 14, 2213. [Google Scholar] [CrossRef]
- Wang, C.L.; Wu, Z.H.; Wang, J.X.; Liu, Y. Theory and Method for Rapid Carbon Footprint Accounting of Solid Wood Furniture. For. Prod. J. 2025, 75, 155–163. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Xu, W.; Liu, X.; Wang, X.D. Study on Permeability of Cunninghamia lanceolata Based on Steam Treatment and Freeze Treatment. Wood Res. 2021, 66, 1721–1731. [Google Scholar] [CrossRef]
- Shi, L.Y.; Liu, Y.; Hu, J.; Chen, H.; Ji, J.G. Life-Cycle Assessment of Bicycles Based on Bamboo Bending Technology. For. Prod. J. 2025, 75, 179–188. [Google Scholar] [CrossRef]
- Xue, J.X.; Xu, W.; Zhou, J.C.; Mao, W.G.; Wu, S.S. Effects of High-Temperature Heat Treatment Modification by Impregnation on Physical and Mechanical Properties of Poplar. Materials 2022, 15, 7334. [Google Scholar] [CrossRef]
- Naumovski, L.; Capuder, M.; Sandak, J.; Azinovic, B. Influence of surface preparation and surface topography on tensile shear strength of polyurethane adhesively bonded beech wood single-lap joints: A finite element method approach. Eur. J. Wood Wood Prod. 2025, 83, 139. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Feng, X.H.; Wu, Y.; Wu, Z.H. Self-matting waterborne polyurethane acrylate wood coating by 222 nm far-UVC irradiation in ambient air. Prog. Org. Coat. 2024, 189, 108305. [Google Scholar] [CrossRef]
- Liu, W.J.; Zhu, L.; Varodi, A.M.; Liu, X.Y.; Lv, J.F. The Effect of Wet and Dry Cycles on the Strength and the Surface Characteristics of Coromandel Lacquer Coatings. Forests 2024, 15, 770. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.Y.; Wang, X.W.; Chu, Q.; Wang, T.Y. Influence of Shell Structure on the Tensile Strength of Fused Filament Fabrication Models. Mater. Plast. 2024, 61, 19–26. [Google Scholar] [CrossRef]
- Fu, S.J.; Xiong, X.Q.; Wan, R.Y.; Zhang, M.; Xu, X.T. The Development and Future Challenges of China’s Furniture Industry. Drewno 2025, 68, 00045. [Google Scholar] [CrossRef]
- Chang, Y.J.; Wu, Z.H. Effect of Sandpaper Meshes on the Performance of Tilia Sp. Self-Repairing Coatings. Polymers 2023, 15, 2835. [Google Scholar] [CrossRef]
- Chang, Y.J.; Wu, Z.H.; Liu, E.W. Fabrication of chitosan-encapsulated microcapsules containing wood wax oil for antibacterial self-healing wood coatings. Ind. Crops Prod. 2024, 222, 119438. [Google Scholar] [CrossRef]
- Chen, Z.B.; Wu, Z.H. Application Prospect of Multifunctional Hydrogel Coating in Household Field. Coatings 2024, 14, 1580. [Google Scholar] [CrossRef]
- Chang, Y.J.; Liu, E.W.; Wu, Z.H. Constructing chitosan microcapsules using hydroxypropyl methylcellulose for self-healing antibacterial wood coating. Int. J. Biol. Macromol. 2025, 308, 142300. [Google Scholar] [CrossRef]
- Chang, Y.J.; Yan, X.X.; Wu, Z.H. Application and prospect of self-healing microcapsules in surface coating of wood. Colloid. Interfac. Sci. 2023, 56, 100736. [Google Scholar] [CrossRef]
- Ma, L.; Xu, S.Y. Investigation on the restoration properties of wood oil microcapsules in wood coatings. Prog. Org. Coat. 2024, 197, 108853. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Shi, K.B.; Jiang, Z.Y.; Guan, C.R.; Zhang, L.; Yang, T.; Xie, F.W. Shellac-based materials: Structures, properties, and applications. Int. J. Biol. Macromol. 2024, 279, 135102. [Google Scholar] [CrossRef]
- Pekerman, P.; Yom-Tov, O.; Bar, H.; Bianco-Peled, H. Light-triggered rupture of shellac/polydopamine composite coatings. Prog. Org. Coat. 2024, 186, 107950. [Google Scholar] [CrossRef]
- Li, K.; Tang, B.S.; Zhang, W.W.; Tu, X.H.; Ma, J.J.; Xing, S.J.; Shao, Y.; Zhu, J.; Lei, F.H.; Zhang, H. A novel approach for authentication of shellac resin in the shellac-based edible coatings: Contain shellac or not in the fruit wax preservative coating. Food Chem. X 2022, 14, 100349. [Google Scholar] [CrossRef] [PubMed]
- Bar, H.; Bianco-Peled, H. The unique nanostructure of shellac films. Prog. Org. Coat. 2021, 157, 106328. [Google Scholar] [CrossRef]
- Yuan, Y.; He, N.; Dong, L.Y.; Guo, Q.Y.; Zhang, X.; Li, B.; Li, L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS Nano 2022, 15, 18794–18821. [Google Scholar] [CrossRef]
- Cho, B.G.; Lee, J.E.; Jeon, S.Y.; Chae, H.G. A study on miscibility properties of polyacrylonitrile blending films with biodegradable polymer, shellac. Polym. Test. 2023, 121, 107983. [Google Scholar] [CrossRef]
- Liu, L.X.; Li, X.; Dong, G.; Zhang, H.; Tao, Y.F.; He, R.; Xu, J.; Ma, J.J.; Tang, B.S.; Zhou, B. Bioinspired Natural Shellac Dressing for Rapid Wound Sealing and Healing. ACS Appl. Mater. Inter. 2023, 15, 43294–43308. [Google Scholar] [CrossRef]
- Acarali, N.; Demir, S. Physical and chemical effects of quartet structure (bamboo/zinc borate/shellac/surfactant) on organic coatings. J. Indian. Chem. Soc. 2021, 98, 100043. [Google Scholar] [CrossRef]
- Liu, M.; Xu, G.L.; Wang, J.A.; Tu, X.W.; Liu, X.Y.; Wu, Z.H.; Lv, J.F.; Xu, W. Effects of Shellac Treatment on Wood Hygroscopicity, Dimensional Stability and Thermostability. Coatings 2020, 10, 881. [Google Scholar] [CrossRef]
- Sözen, E. Determination of Changes in the Mechanical and Color Properties of Some Wood Species Treated with Shellac. Bioresources 2022, 17, 1703–1716. [Google Scholar] [CrossRef]
- Wang, X.X.; Huang, Y.X.; Wang, S.D.; Lei, W.C.; Wu, J.Y.; Yu, W.J. Sustainable superhydrophobic wood with self-healing properties and enhanced durability. Chem. Eng. J. 2025, 504, 159000. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; Hassan, M.L.; Abd El-Sayed, E.S.; El-Sakhawy, M. Cellulose Nanofiber/Shellac Nanocomposite Films as Coatings for Packaging Paper. Cell. Chem. Technol. 2023, 57, 143–153. [Google Scholar] [CrossRef]
- Li, X.Q.; Chen, Y. Rosin: A comprehensive review on traditional uses, phytochemistry, and pharmacology. Fitoterapia 2024, 177, 106068. [Google Scholar] [CrossRef]
- Pinheiro, A.; Martins, I.; Bento, A.; Escorcio, R.; Nunes, C.; Varela, A.; Nunes, J.; Afonso, C.A.M.; Pereira, C.S. Rosin from Pinus pinaster Portuguese forests shows a regular profile of resin acids. Front. Plant Sci. 2023, 14, 1268887. [Google Scholar] [CrossRef]
- Rubini, M.; Sandak, J.; Robles, E.; Sandak, A.; Charrier, B. Mid-Level data fusion techniques for gum rosin discrimination according to Pinus species, tapping methods, and geographic origins. Microchem. J. 2025, 209, 112630. [Google Scholar] [CrossRef]
- Liu, H.C.; Wu, X.; Guo, Z.P.; Dong, P.; Ge, Q.; Wei, L.W.; Sun, Z.L. Electrical Tree Characteristics of Bisphenol A Epoxy Resin/Maleopimaric Anhydride Curing System. Polymers 2022, 14, 3867. [Google Scholar] [CrossRef]
- Liu, H.H.; Wu, X.; Liu, Y.P.; Guo, Z.P.; Ge, Q.; Sun, Z.L. The curing characteristics and properties of bisphenol A epoxy resin/maleopimaric acid curing system. J. Mater. Res. Technol. 2022, 21, 1655–1665. [Google Scholar] [CrossRef]
- Bakatovich, A.; Gaspar, F.; Boltrushevich, N. Thermal insulation material based on reed and straw fibres bonded with sodium silicate and rosin. Constr. Build. Mater. 2022, 352, 129055. [Google Scholar] [CrossRef]
- Tao, Y.; Yan, X.X. Influence of HLB Value of Emulsifier on the Properties of Microcapsules and Self-Healing Properties of Waterborne Coatings. Polymers 2022, 14, 1304. [Google Scholar] [CrossRef]
- Han, Y.; Yan, X.X.; Tao, Y. Effect of Number of Impregnations of Microberlinla sp. with Microcapsule Emulsion on the Performance of Self-Repairing Coatings on Wood Surfaces. Coatings 2022, 12, 989. [Google Scholar] [CrossRef]
- Zou, Y.M.; Pan, P.; Zhang, N.N.; Yan, X.X. Effect of Nano-Silver Solution Microcapsules Mixed with Rosin-Modified Shellac Microcapsules on the Performance of Water-Based Coating on Andoung Wood (Monopetalanthus spp.). Coatings 2024, 14, 286. [Google Scholar] [CrossRef]
- Zou, Y.M.; Pan, P.; Yan, X.X. Comparative Analysis of Performance of Water-Based Coatings Prepared by Two Kinds of Anti-Bacterial Microcapsules and Nano-Silver Solution on the Surface of Andoung Wood. Coatings 2023, 13, 1518. [Google Scholar] [CrossRef]
- Yu, L.; Ye, S.M.; Fang, J.; He, J.; Yang, G.C. Exploring the photochromic mechanism of Andoung wood by spectral and colorimetric analysis technology. Wood Mater. Sci. Eng. 2025, 1–15. [Google Scholar] [CrossRef]
- GB/T 11186.3-1989; Methods for Measuring the Color of Paint Films—Part 3: Calculation of Color Differences. Standardization Administration of the People’s Republic of China: Beijing, China, 1989.
- GB/T 4893.6-2013; Test of Surface Coatings of Furniture—Part 6: Determination of Gloss Value. Standardization Administration of the People’s Republic of China: Beijing, China, 2013.
- GB/T 6739-2006; Paint and Varnishes-Determination of Film Hardness by Pencil Test. Standardization Administration of the People’s Republic of China: Beijing, China, 1998.
- Wang, C.; Huang, H.Y.; Wang, X.W.; Wang, Y.B.R.; Zhu, Y. Effect of drying treatment on the physical and mechanical properties of material extrusion-based 3D-printed PETG models. BioResources 2025, 20, 7000–7009. [Google Scholar] [CrossRef]
- Hu, W.; Luo, M.; Liu, Y.; Xu, W.; Konukcu, A.C. Experimental and numerical studies on the mechanical properties and behaviors of a novel wood dowel reinforced dovetail joint. Eng. Fail. Anal. 2023, 152, 107440. [Google Scholar] [CrossRef]
- GB/T 4893.4-2013; Test of Surface Coatings of Furniture. Part IV: Determination of Adhesion-Cross Cut. Standardization Administration of the People’s Republic of China: Beijing, China, 2013.
- Xu, X.T.; Zhang, M.; Yue, X.Y.; Xiong, X.Q. Design of furniture mortise-and-tenon joints: A review of mechanical properties and design recommendations. Wood Mater. Sci. Eng. 2025, 1–15. [Google Scholar] [CrossRef]
- Hu, W.; Yu, R. Mechanical and acoustic characteristics of four wood species subjected to bending load. Maderas-Cienc. Tecnol. 2023, 25, 39. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.; Kasal, A.; Erdil, Y.Z. The state of the art of biomechanics applied in ergonomic furniture design. Appl. Sci. 2023, 13, 12120. [Google Scholar] [CrossRef]
Test Material | Purity | Manufacturer |
---|---|---|
37% Formaldehyde | AR | Shanghai Biotechnology Co., Ltd., Shanghai, China |
Melamine | AR | Shandong Yousuo Chemical Technology Co., Ltd., Linyi, China |
Triethanolamine | AR | Guangzhou Jiale Chemical Co., Ltd., Guangzhou, China |
Span-20 | AR | Shandong Yousuo Chemical Technology Co., Ltd., Linyi, China |
Tween-80 | AR | Shandong Yousuo Chemical Technology Co., Ltd., Linyi, China |
12.5% Shellac solution | - | Shanghai Yuyan Building Materials Co., Ltd., Shanghai, China |
Liquid dust-free rosin | - | Suzhou Guyue Musical Instruments Co., Ltd., Suzhou, China |
Monohydrate citric acid | AR | Nanjing Quallong Biotechnology Co., Ltd., Nanjing, China |
Anhydrous ethanol | AR | Wuxi Jingke Chemical Co., Ltd., Wuxi, China |
Ethyl acetate | AR | Xi’an Tianmao Chemical Co., Ltd., Xi’an, China |
Equipment | Model | Manufacturer |
---|---|---|
Electronic balance | JCS-W | Harbin Zhonghui Weighing Apparatus Co., Ltd., Harbin, China |
Constant-temperature heating magnetic stirrer | DF-101S | Gongyi Yuhua Instrument Co., Ltd., Gongyi, China |
Ultrasonic material emulsification disperser | BILON-500 | Shanghai Bilang Instrument Co., Ltd., Shanghai, China |
Electric heating constant-temperature blower drying box | DHG-9643BS-Ⅲ | Shanghai Xinmiao Medical Instrument Co., Ltd., Shanghai, China |
Optical microscope | Zeiss Axio Scope A1 | Carl Zeiss AG., Baden, Germany |
Scanning electron microscope | Quanta-200 | Thermo Fisher Technology Co., Ltd., Massachusetts, USA |
Fourier-transform infrared spectrometer | VERTEX 80V | Bruker Co., Karlsruhe, Germany |
Portable colorimeter | SEGT-J | Zhuhai Tianchuang Instrument Co., Ltd., Zhuhai, China |
Intelligent gloss meter | HG268 | Shenzhen 3nh Technology Co., Ltd., Shenzhen, China |
Ten-thousand-abilities test machine | AGS-X | Shimadzu Corporation, Kyoto, Japan |
Pencil-hardness meter | HT-6510P | Quzhou Aipu Metrology Instrument Co., Ltd., Quzhou, China |
Paint film adhesion tester | QFH-A | Quzhou Aipu Metrology Instrument Co., Ltd., Quzhou, China |
Microcapsule Content (%) | Microcapsules (g) | Waterborne Primer (g) | Self-Healing Waterborne Primer (g) |
---|---|---|---|
0.0 | 0.0 | 4.0 | 4.0 |
5.0 | 0.2 | 3.8 | 4.0 |
10.0 | 0.4 | 3.6 | 4.0 |
15.0 | 0.6 | 3.4 | 4.0 |
20.0 | 0.8 | 3.2 | 4.0 |
25.0 | 1.0 | 3.0 | 4.0 |
Microcapsule Content (%) | L0 | a0 | b0 | L | a | b | ∆E |
---|---|---|---|---|---|---|---|
0 | 68.7 | 7.4 | 12.9 | 69.3 | 11.1 | 16.1 | 4.9 |
5.0 | 74.1 | 9.2 | 15.4 | 72.7 | 8.2 | 20.2 | 5.1 |
10.0 | 67.4 | 10.6 | 29.1 | 71.2 | 9.2 | 24.9 | 5.8 |
15.0 | 70.5 | 7.8 | 10.8 | 69.3 | 11.1 | 16.1 | 6.3 |
20.0 | 74.4 | 7.4 | 13 | 70.5 | 10.6 | 20.7 | 9.2 |
25.0 | 77.7 | 5.7 | 10.6 | 73.1 | 7.9 | 20.3 | 10.9 |
Microcapsule Content (%) | L0 | a0 | b0 | L | a | b | ∆E |
---|---|---|---|---|---|---|---|
0 | 68.7 | 7.4 | 12.9 | 69.3 | 11.1 | 16.1 | 4.9 |
5.0 | 73.7 | 10.8 | 21.6 | 71.2 | 9.2 | 24.9 | 4.5 |
10.0 | 74.2 | 7.9 | 15.3 | 69.3 | 11.1 | 16.1 | 5.9 |
15.0 | 62.3 | 15.9 | 29.8 | 64.5 | 13.6 | 22.7 | 7.8 |
20.0 | 80.6 | 5.6 | 11.4 | 76.5 | 5.3 | 19.3 | 8.9 |
25.0 | 76.8 | 8.3 | 9.8 | 84.2 | 2.9 | 4.8 | 10.4 |
Microcapsule Content (%) | 20° (GU) | 60° (GU) | 85° (GU) |
---|---|---|---|
0 | 0.6 | 2.3 | 1.2 |
5.0 | 1.4 | 9.8 | 5.3 |
10.0 | 0.9 | 5.7 | 1.1 |
15.0 | 0.6 | 3.1 | 0.5 |
20.0 | 0.8 | 2.7 | 0.4 |
25.0 | 0.6 | 1.5 | 0.2 |
Microcapsule Content (%) | 20° (GU) | 60° (GU) | 85° (GU) |
---|---|---|---|
0 | 1.2 | 5.2 | 2.7 |
5.0 | 1.3 | 7.2 | 2.1 |
10.0 | 0.8 | 3.8 | 0.8 |
15.0 | 0.7 | 2.6 | 0.4 |
20.0 | 0.7 | 1.9 | 0.3 |
25.0 | 0.8 | 1.5 | 0.1 |
Core–Wall Ratio | Microcapsule Content (%) | Adhesion (Level) | Hardness |
---|---|---|---|
0.59:1 | 0 | 0 | HB |
5.0 | 1 | 2B | |
10.0 | 1 | 2B | |
15.0 | 2 | B | |
20.0 | 2 | B | |
25.0 | 2 | HB | |
0.68:1 | 0 | 0 | HB |
5.0 | 1 | HB | |
10.0 | 2 | B | |
15.0 | 2 | 2B | |
20.0 | 3 | 2B | |
25.0 | 3 | HB |
Core–Wall Ratio | Microcapsule Content (%) | Glossiness Before Thermal Aging (GU) | Glossiness After Thermal Aging (GU) | Glossiness Difference (GU) |
---|---|---|---|---|
0.59:1 | 0 | 2.3 | 3.3 | 1.0 |
5.0 | 9.8 | 11.5 | 1.7 | |
10.0 | 5.7 | 6.7 | 1.0 | |
15.0 | 3.1 | 4.1 | 1.0 | |
20.0 | 2.7 | 3.4 | 0.7 | |
25.0 | 1.5 | 2.0 | 0.5 | |
0.68:1 | 0 | 5.2 | 7.0 | 1.8 |
5.0 | 7.2 | 8.9 | 1.7 | |
10.0 | 3.8 | 4.8 | 1.0 | |
15.0 | 2.6 | 3.3 | 0.7 | |
20.0 | 1.9 | 2.5 | 0.6 | |
25.0 | 1.5 | 1.9 | 0.4 |
Microcapsule Content (%) | Core–Wall Ratio of 0.59:1 | Core–Wall Ratio of 0.68:1 | ||||
---|---|---|---|---|---|---|
Before Repair (μm) | After Repair (μm) | Repair Rate (%) | Before Repair (μm) | After Repair (μm) | Repair Rate (%) | |
0 | 5.62 | 5.62 | 0.0 | 10.25 | 10.25 | 0.0 |
5.0 | 6.15 | 5.98 | 2.70 ± 0.10 | 11.91 | 10.91 | 8.30 ± 0.29 |
10.0 | 7.02 | 6.75 | 3.00 ± 0.08 | 11.30 | 10.15 | 10.20 ± 0.17 |
15.0 | 7.10 | 6.38 | 7.90 ± 0.10 | 11.55 | 10.15 | 12.10 ± 0.33 |
20.0 | 8.75 | 7.35 | 16.00 ± 0.33 | 11.68 | 9.80 | 16.10 ± 0.14 |
25.0 | 8.19 | 7.04 | 14.00 ± 0.36 | 12.42 | 10.67 | 14.10 ± 0.30 |
Difference Source | SS | df | MS | F | p-Value | Fcrit |
---|---|---|---|---|---|---|
Content of microcapsules | 349.35 | 5 | 69.87 | 13.552955 | 0.0062355 | 5.0503291 |
Core–wall ratio | 24.653333 | 1 | 24.653333 | 4.7821027 | 0.0804202 | 6.607891 |
Error | 25.776667 | 5 | 5.1553333 | |||
Total | 399.78 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, J.; Han, Y.; Yan, X.; Li, J. Effect of Shellac–Rosin Microcapsules on the Self-Healing Properties of Waterborne Primer on Wood Surfaces. Coatings 2025, 15, 1003. https://doi.org/10.3390/coatings15091003
Hang J, Han Y, Yan X, Li J. Effect of Shellac–Rosin Microcapsules on the Self-Healing Properties of Waterborne Primer on Wood Surfaces. Coatings. 2025; 15(9):1003. https://doi.org/10.3390/coatings15091003
Chicago/Turabian StyleHang, Jingyi, Yang Han, Xiaoxing Yan, and Jun Li. 2025. "Effect of Shellac–Rosin Microcapsules on the Self-Healing Properties of Waterborne Primer on Wood Surfaces" Coatings 15, no. 9: 1003. https://doi.org/10.3390/coatings15091003
APA StyleHang, J., Han, Y., Yan, X., & Li, J. (2025). Effect of Shellac–Rosin Microcapsules on the Self-Healing Properties of Waterborne Primer on Wood Surfaces. Coatings, 15(9), 1003. https://doi.org/10.3390/coatings15091003