Preparation via Wet Chemical Method, Characterization, and Antimicrobial and Antifungal Properties of Benzalkonium Chloride-Modified Montmorillonite
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Equipment
2.3. Latex Paint Formulation (Mass Fraction)
2.4. Preparation of Ag-Exchanged Montmorillonites
2.5. Multimodal Characterization: SEM, XRD, FTIR, TGA, and BET
2.6. Antibacterial Activity Tests
2.6.1. Determination of the Diameter of the Inhibition Zone
2.6.2. Determination of the Minimum Inhibitory Concentration (MIC)
2.6.3. Antimicrobial Testing of Paint Films
2.6.4. Fungal Resistance Testing of Paint Films
3. Results and Discussion
3.1. SEM Analysis
3.2. XRD Analysis
3.3. ATR-FTIR Study
3.4. Thermogravimetric Analysis (TGA)
3.5. Gas Sorption Analysis: SSA and PSD by BET/BJH Methods
3.6. Antibacterial Tests
3.7. Minimum Inhibitory Concentration
3.8. Antimicrobial Test
3.9. Fungal Resistance Testing
4. Conclusions
- (1)
- Multiple characterization techniques collectively confirm the successful modification of montmorillonite by benzalkonium chloride (1227). Scanning electron microscopy (SEM) reveals reduced particle aggregation and enhanced dispersion with densified surface morphology in 1227-MMT compared to pristine MMT. X-ray diffraction (XRD) analysis demonstrates the elimination of impurity-phase diffraction peaks and confirms 1227 intercalation into interlayer spaces. Fourier-transform infrared (FTIR) spectroscopy exhibits new absorption bands at 2926.86 cm−1 and 2852 cm−1, corresponding to C-H stretching vibrations of alkyl chains in 1227, providing direct evidence of organic modification. Thermogravimetric analysis (TGA) identifies a predominant weight loss stage at 180–410 °C attributable to 1227 thermal decomposition. Consistently, nitrogen adsorption–desorption (BET) analysis reveals altered pore architecture and surface hydrophobicity, manifested as reduced adsorption capacity and constricted hysteresis loop—findings that align with our prior pore structure characterization.
- (2)
- Antibacterial assessment confirms that benzalkonium chloride-modified montmorillonite (1227-MMT) exhibits potent efficacy against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Quantitative analysis reveals inhibition zones of 15.6 mm and 17.7 mm for E. coli and S. aureus, respectively, whereas pristine MMT shows no inhibitory activity. The minimum inhibitory concentration (MIC) values further demonstrate enhanced antimicrobial potency, with 1227-MMT exhibiting MICs of 1 mg/mL and 0.5 mg/mL against E. coli and S. aureus—significantly lower than those of unmodified MMT (>128 mg/mL for both strains).
- (3)
- MMT-1227 demonstrates significant application potential in latex coatings. Incorporating 0.3 wt% of 1227-MMT yields dry films exhibiting 99.9% antibacterial efficacy against both Escherichia coli and Staphylococcus aureus. Furthermore, these films achieve mold resistance Grade 0 (according to the GB/T 1741-2020 standard) with no fungal growth observed, representing substantial enhancement over the control group without additives (Grade 3).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Yang, H.; Zhang, J.; Zhao, Q.; Gao, H. Study on antibacterial properties of Cu(2+)-carrying and Ag+-carrying montmorillonite. China Feed. 2014, 14, 25–28, 37. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Zargar, M.; Yunus, W.M.Z.W.; Ibrahim, N.A.; Shabanzadeh, P.; Moghaddam, M.G. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int. J. Nanomed. 2009, 6, 271–284. [Google Scholar] [CrossRef]
- Zhang, K.; Tan, S.; Liu, Y. Antimicrobial activity and antimicrobial mechanism of modified montmorillonite with quaternary ammonium salts. J. Chin. Ceram. Soc. 2006, 34, 87–92. [Google Scholar] [CrossRef]
- Özdemir, G.; Saadet, Y.; Mine, H.L. Preparation of cetylpyridinium montmorillonite for antibacterial applications. Appl. Clay Sci. 2013, 72, 201–205. [Google Scholar] [CrossRef]
- Verma, A.; Parveen, R.; Shamsi, T.N.; Khan, A.A.; Fatima, S.; Aazam, E.S.; Riaz, U. Ed .A Novel Strategy to Arrest Bacterial Pathogen Infestation Using Poly(o-Phenylenediamine)/ Montmorillonite Nanocomposites. Chem. Sel. 2022, 7, e202200797. [Google Scholar] [CrossRef]
- Edraki, M.; Zaarei, D. Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties. Asian J. Green Chem. 2018, 2, 189–200. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, J.; Zhang, R.; Liu, J.; Wang, W.; Hou, H. Ultrasound-Assisted Preparation, Characterization, and Antibacterial Activity of Montmorillonite Modified by epsilon-Polylysine Hydrochloride. Materials 2019, 12, 4148. [Google Scholar] [CrossRef]
- Maryan, A.S.; Montazer, M.; Rashidi, A.; Rahimi, M. Antibacterial Properties of Clay Layers Silicate: A Special Study of Montmorillonite on Cotton Fiber. Asian J. Chem. 2013, 25, 2889–2892. [Google Scholar] [CrossRef]
- ISO 22196-2011; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. ISO: Geneva, Switzerland, 2011.
- GB/T 1741-2020; Test Method for Determining the Resistance of Paints Film to Mold. The Standardization Administration of the People’s Republic of China: Beijing, China, 2020.
- Olszewski, A.; Ławniczak, A.; Kosmela, P.; Strąkowski, M.; Mielewczyk-Gryń, A.; Hejna, A.; Piszczyk, Ł. Influence of Surface-Modified Montmorillonite Clays on the Properties of Elastomeric Thin Layer Nanocomposites. Materials 2023, 16, 1703. [Google Scholar] [CrossRef]
- Nascimento, D.S.D.; Etcheverry, M.; Orduz, A.E.; Waiman, C.V.; Zanini, G.P. Adsorption of cationic surfactant as a probe of the montmorillonite surface reactivity in the alginate hydrogel composites. RSC Adv. 2022, 12, 35469–35476. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, J.; Guo, N.; Sun, J.; Hu, H.; Chi, X. Nonlinear Conductivity and Thermal Stability of Anti-Corona Epoxy Resin Nanocomposites. Polymers 2024, 16, 1296. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, D.; Wang, Y.; Chen, G.; Jiang, S.; Li, G.; Wang, Y.; Wang, W.; Wu, P.; Liu, X.; et al. Comprehensive Characterization of the Structure and Gel Property of Organo-Montmorillonite: Effect of Layer Charge Density of Montmorillonite and Carbon Chain Length of Alkyl Ammonium. Minerals 2020, 10, 378. [Google Scholar] [CrossRef]
- Kahkha, M.R.R.; Kaykhaii, M.; Kahkha, B.R.; Khosravi, H.; Tohidlou, E. Simultaneous removal of heavy metals from wastewater using modified sodium montmorillonite nanoclay. Anal. Sci. 2020, 36, 1039–1043. [Google Scholar] [CrossRef]
- Tzoumani, I.; Druvari, D.; Evangelidis, M.; Vlamis-Gardikas, A.; Bokias, G.; Kallitsis, J.K. Facile Synthesis of Dual-Functional Cross-Linked Membranes with Contact-Killing Antimicrobial Properties and Humidity-Response. Molecules 2024, 29, 2372. [Google Scholar] [CrossRef]
- Huang, H.; Yin, Y.; Zhang, B.; Feng, G. Effects of the Structure and Composition of Montmorillonite on the Dimerization of Unsaturated Fatty Acids. J. Braz. Chem. Soc. 2018, 29, 1516–1527. [Google Scholar] [CrossRef]
- Alam, N.; Mokaya, R. Strongly acidic mesoporous aluminosilicates prepared via hydrothermal restructuring of a crystalline layered silicate. J. Mater. Chem. A 2015, 3, 7799–7809. [Google Scholar] [CrossRef]
- Xi, Y.; Zhe, D.; He, H.; Frost, R.L. Structure of organoclays--an X-ray diffraction and thermogravimetric analysis study. J. Colloid Interface Sci. 2004, 277, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Martens, M.; He, H.; Frost, R.L. Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J. Therm. Anal. Calorim. 2005, 81, 91–97. [Google Scholar] [CrossRef]
- Peretich, M. Targeted Synthesis and Characterization of Nanostructured Silicate Building Block Supports and Heterogeneous Catalysts with Tungsten(VI) or Zirconium(IV) Centers. Ph.D. Thesis, The University of Tennessee, Knoxville, TN, USA, 2011. [Google Scholar]
- Krutpijit, C.; Jongsomjit, B. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays. J. Oleo Sci. 2016, 65, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Krupskaya, V.V.; Zakusin, S.V.; Tyupina, E.A.; Dorzhieva, O.V.; Zhukhlistov, A.P.; Belousov, P.E.; Timofeeva, M.N. Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions. Minerals 2017, 7, 49. [Google Scholar] [CrossRef]
- Lv, Z.; Xue, P.; Xie, T.; Zhao, J.; Tian, S.; Liu, H.; Qi, Y.; Sun, S.; Lv, X. High-performing PVDF membranes modified by Na+ MMT/ionic liquids (ILs) with different chain lengths: Dye adsorption and separation from O/W emulsion. Sep. Purif. Technol. 2023, 305, 122516. [Google Scholar] [CrossRef]
- Carson, M.S.; Smith, T.K. Role of bentonite in prevention of T-2 toxicosis in rats. J. Anim. Sci. 1983, 57, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Zhou, Y.; Lv, G.; Zhou, R. Simultaneous Detoxification of Aflatoxin B1, Zearalenone and Deoxynivalenol by Modified Montmorillonites. Molecules 2022, 27, 315. [Google Scholar] [CrossRef]
- Huang, F.Z.; Wang, Y.Q.; Gao, W.Y.; Cao, X.Q.; Zhang, Y.; Shang, Y.N.; Zhang, Y.Z.; Kan, Y.J. Construction and regulation of high active sites in montmorillonite composite catalyst for the removal of ofloxacin via persulfate activation. Heliyon 2024, 10, e29896. [Google Scholar] [CrossRef]
- Parolo, M.E.; Pettinari, G.R.; Musso, T.B.; Sánchez-Izquierdo, M.P.; Fernández, L.G. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance. Appl. Surf. Sci. 2014, 320, 356–363. [Google Scholar] [CrossRef]
- Qiu, J.; Jiang, S.; Wang, Y.; Chen, G.; Liu, D.; Liu, X.; Wang, G.; Wu, P.; Lyu, X. Crystal chemistry characteristics and dispersion performance of Ca-montmorillonite with different layer charge density. Mater. Res. Express 2020, 7, 075505. [Google Scholar] [CrossRef]
- Kovalchuk, I.; Zakutevskyy, O.; Sydorchuk, V.; Diyuk, O.; Lakhnik, A. The Effect of High-Energy Ball Milling of Montmorillonite for Adsorptive Removal of Cesium, Strontium, and Uranium Ions from Aqueous Solution. Eng 2023, 4, 2812–2825. [Google Scholar] [CrossRef]
- He, H.; Zhou, Q.; Martens, W.N.; Kloprogge, T.J.; Yuan, P.; Xi, Y.; Zhu, J.; Frost, R.L. Microstructure of HDTMA+-Modified Montmorillonite and its Influence on Sorption Characteristics. Clays Clay Miner. 2006, 54, 689–696. [Google Scholar] [CrossRef]
- Carey, A.B.; Ashenden, A.; Kper, I. Model architectures for bacterial membranes. Biophys. Rev. 2022, 14, 111–143. [Google Scholar] [CrossRef] [PubMed]
- Garrido, L.; Lyra, P.; Rodrigues, J.; Viana, J.; Mendes, J.J.; Barroso, H. Revisiting Oral Antiseptics, Microorganism Targets and Effectiveness. J. Pers. Med. 2023, 13, 1332. [Google Scholar] [CrossRef]
Observed Growth on Specimens | Rating |
---|---|
None | 0 |
Traces of growth (<10%) | 1 |
Light growth (10–30%) | 2 |
Moderate growth (30–60%) | 3 |
Heavy growth (60% to complete coverage) | 4 |
Bacteria | MMT-1227 (mm) | MMT (mm) |
---|---|---|
E.coli | 15.6 | NA * |
S. aureus | 17.7 | NA |
Bacteria | MMT-1227 mg/mL | MMT mg/mL |
---|---|---|
E.coli | 1 | >128 |
S. aureus | 0.5 | >128 |
Specimen | Test Strains | Mean Viable Bacterial Count of the Control Samples at 0 h (CFU/cm2) | Mean Viable Bacterial Count of the Control Samples at 24 h (CFU/cm2) | Mean Viable Bacterial Count of the Test Samples After 24 h (CFU/cm2) | Antibacterial Rate (%) |
---|---|---|---|---|---|
0.3% MMT-1227 | E. coli | 1.5 × 105 | 5.6 × 106 | 0.79 | 99.9 |
S. aureus | 2.3 × 105 | 7.6 × 106 | 0.63 | 99.9 |
Sample | Mold Growth Area/% | Grade/Level |
---|---|---|
Control | 57 | 3 |
0.3% MMT-1227 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Yang, F.; Liu, C.; Yu, T.; Zhou, Z.; Sun, H.; Li, K.; Zhan, X.; Shi, M.; Kim, S.; et al. Preparation via Wet Chemical Method, Characterization, and Antimicrobial and Antifungal Properties of Benzalkonium Chloride-Modified Montmorillonite. Coatings 2025, 15, 959. https://doi.org/10.3390/coatings15080959
Xu S, Yang F, Liu C, Yu T, Zhou Z, Sun H, Li K, Zhan X, Shi M, Kim S, et al. Preparation via Wet Chemical Method, Characterization, and Antimicrobial and Antifungal Properties of Benzalkonium Chloride-Modified Montmorillonite. Coatings. 2025; 15(8):959. https://doi.org/10.3390/coatings15080959
Chicago/Turabian StyleXu, Shirong, Feng Yang, Changchun Liu, Taotao Yu, Zexiong Zhou, Hong Sun, Kunmao Li, Xiaoli Zhan, Mingkui Shi, Soyeon Kim, and et al. 2025. "Preparation via Wet Chemical Method, Characterization, and Antimicrobial and Antifungal Properties of Benzalkonium Chloride-Modified Montmorillonite" Coatings 15, no. 8: 959. https://doi.org/10.3390/coatings15080959
APA StyleXu, S., Yang, F., Liu, C., Yu, T., Zhou, Z., Sun, H., Li, K., Zhan, X., Shi, M., Kim, S., Tang, G., Bai, H., & Ogino, K. (2025). Preparation via Wet Chemical Method, Characterization, and Antimicrobial and Antifungal Properties of Benzalkonium Chloride-Modified Montmorillonite. Coatings, 15(8), 959. https://doi.org/10.3390/coatings15080959