Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Test Program
2.2.1. Microscopic Observation
2.2.2. Droplet Diffusion Method
2.2.3. Molecular Simulation
3. Results and Discussion
3.1. Effect of Rejuvenator on Asphaltene Flocculation
3.1.1. Asphaltene Flocculation of Aged Asphalt Binder
3.1.2. The Planar Dimensions of Flocculation Particles Under Different Rejuvenators
3.2. Colloidal Stability of Recycled Asphalt Binder
3.2.1. Optimal Dosage of Rejuvenators
3.2.2. Droplet Diffusion Images of Recycled Asphalt Binder
3.2.3. Grayness Ratio of Different Recycled Asphalt Binder
3.3. The Rheological Properties of Recycled Asphalt Binder
3.3.1. The High-Temperature Performance of Recycled Asphalt Binder
3.3.2. The Low-Temperature Performance of Recycled Asphalt Binder
3.4. Model Calculation
Solubility Parameter
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donchenko, M.; Grynyshyn, O.; Prysiazhnyi, Y.; Pyshyev, S.; Kohut, A. The problem of road bitumen technological aging and ways to solve it: A review. Chem. Chem. Technol. 2024, 18, 284–294. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, P.; Dai, J.; Ma, F.; Hou, Y.; Zhu, C.; Liu, S. Rheological properties and microscopic mechanism of composite regenerated asphalt. Fuel 2025, 385, 134159. [Google Scholar] [CrossRef]
- Donchenko, M.; Grynyshyn, O.; Demchuk, Y.; Topilnytskyy, P.; Turba, Y. Influence of potassium humate on the technological aging processes of oxidized petroleum bitumen. Chem. Chem. Technol. 2023, 17, 681–687. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Liu, J.; Peng, X.; Lu, W.; Wang, Z.; Xie, N. Performance evaluation of aged asphalt rejuvenated with various bio-oils based on rheological property index. J. Clean. Prod. 2023, 385, 134159. [Google Scholar] [CrossRef]
- Kandhal, P.S.; Mallick, R.B. Pavement Recycling Guidelines for State and Local Governments—Participant’s Reference Book; FHWA-SA-98-042; Federal Highway Administration: Washington, DC, USA, 1997. [Google Scholar]
- Lee, N.; Chou, C.P.; Chen, K.Y. Benefits in energy savings and CO2 reduction by using reclaimed asphalt pavement. In Proceedings of the Transportation Research Board 91st Annual Meeting, Washington, DC, USA, 22–26 January 2012. [Google Scholar]
- Aurangzeb, Q.; Al-Qadi, I.L.; Ozer, H.; Yang, R. Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resour. Conserv. Recycl. 2014, 83, 77–86. [Google Scholar] [CrossRef]
- Junan, S.; Serji, N.A.; Lee, S. HP-GPC characterization of rejuvenated aged CRM binders. J. Mater. Civ. Eng. 2007, 19, 515–522. [Google Scholar]
- Hohmann, A.D.; Forrester, M.J.; Staver, M.; Kuehl, B.W.; Hernández Nacú, C.; Williams, R.C.; Cochran, E.W. Chemically mediated asphalt rejuvenation via epoxidized vegetable oil derivatives for sustainable pavements. Fuel 2023, 355, 129374. [Google Scholar] [CrossRef]
- Erhan, S.Z.; Asadauskas, S. Lubricant basestocks from vegetable oils. Ind. Crops Prod. 2000, 11, 277–282. [Google Scholar] [CrossRef]
- Song, M.; Lee, K.; Oh, S.-H.; Bae, M.-S. Impact of polycyclic aromatic hydrocarbons (PAHs) from an asphalt mix plant in a suburban residential area. Appl. Sci. 2020, 10, 4632. [Google Scholar] [CrossRef]
- Pichler, C.; Perfler, L.; Lackner, R. Deconvolution of main hydration kinetic peaks in properly sulfated Portland cements with boundary nucleation and growth models and relation to early-age concrete strength development. Constr. Build. Mater. 2022, 348, 128602. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.; Heidrich, O. Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. J. Clean. Prod. 2009, 17, 283–296. [Google Scholar] [CrossRef]
- Yi, J.; Wang, Y.; Pei, Z.; Xu, M.; Feng, D. Mechanisms and research progress on biological rejuvenators for regenerating aged asphalt: Review and discussion. J. Clean. Prod. 2023, 422, 138622. [Google Scholar] [CrossRef]
- Prosperi, E.; Bocci, E. A review on bitumen aging and rejuvenation chemistry: Processes, materials and analyses. Sustainability 2021, 13, 6523. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Z.; Yang, J.; Li, X. Comprehensive review on the application of bio-rejuvenator in the regeneration of waste asphalt materials. Constr. Build. Mater. 2021, 295, 123631. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- He, X.; Wu, G.; Yan, Y. Research progress on vegetable oil-based platform compounds and polymer materials. Chin. J. Bioeng. 2017, 33, 701–719. [Google Scholar]
- Al-Sabaeei, A.M.; Napiah, M.B.; Sutanto, M.H.; Alaloul, W.S.; Usman, A. A systematic review of bio-asphalt for flexible pavement applications: Coherent taxonomy, motivations, challenges and future directions. J. Clean. Prod. 2019, 249, 119357. [Google Scholar] [CrossRef]
- Hallizza, A.; Esmaeil, A.; Majid, Z. Investigation on physical properties of waste cooking oil rejuvenated bitumen binder. Constr. Build. Mater. 2012, 37, 398–405. [Google Scholar]
- Sun, Z.; Yi, J.; Huang, Y.; Feng, D.; Guo, C. Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Constr. Build. Mater. 2016, 102, 496–504. [Google Scholar] [CrossRef]
- Martins, Z.; Mallick, R.B.; Poulikakos, L.; Frank, R. Influence of six rejuvenators on the performance properties of reclaimed asphalt pavement (RAP) binder and 100% recycled asphalt mixtures. Constr. Build. Mater. 2014, 71, 538–550. [Google Scholar]
- Du, B.; Li, R.; Guo, F.; Cai, R.; Pei, J. Evaluation of rheological and microscopic properties of SBS-modified asphalt binder with multiple regeneration. J. Mater. Civ. Eng. 2023, 35, 04023461. [Google Scholar] [CrossRef]
- Pratik, N.; Sahoo, U.C. Rheological, chemical and thermal investigations on an aged binder rejuvenated with two nonedible oils. Road Mater. Pavement Des. 2017, 18, 612–629. [Google Scholar]
- Zhang, L.; Tan, Y.; Hussain, B. Relationship between glass transition temperature and low temperature properties of oil modified binders. Constr. Build. Mater. 2016, 104, 92–98. [Google Scholar]
- Cao, X.; Wang, H.; Cao, X.; Sun, W.; Zhu, H.; Tang, B. Investigation of theological and chemical properties asphalt binder rejuvenated with waste vegetable oil. Constr. Build. Mater. 2018, 180, 455–463. [Google Scholar] [CrossRef]
- Behnood, A. Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: A review. J. Clean. Prod. 2019, 231, 171–182. [Google Scholar] [CrossRef]
- Lv, S.; Liu, J.; Peng, X.; Liu, H.; Hu, L.; Yuan, J.; Wang, J. Rheological and microscopic characteristics of bio-oil recycled asphalt. J. Clean. Prod. 2021, 295, 126449. [Google Scholar] [CrossRef]
- Ding, Y.; Shan, B.; Cao, X.; Liu, Y.; Huang, M.; Tang, B. Development of bio oil and bio asphalt by hydrothermal liquefaction using lignocellulose. J. Clean. Prod. 2020, 288, 125586. [Google Scholar] [CrossRef]
- Wiehe, I.A. Process Chemistry of Petroleum Macromolecules; CRC Press: Boca Raton, FL, USA, 2008; pp. 181–262. [Google Scholar]
- Tabatabaee, H.A.; Kurth, T.L. Analytical investigation of the impact of a novel bio-based recycling agent on the colloidal stability of aged bitumen. Road Mater. Pavement Des. 2017, 18 (Suppl. S2), 131–140. [Google Scholar]
- Zhang, R.; Wang, H.; Jiang, X.; You, Z.; Yang, X.; Ye, M. Thermal storage stability of bio-oil modified asphalt. J. Mater. Civ. Eng. 2018, 30, 04018054. [Google Scholar] [CrossRef]
- Chen, M.; Leng, B.; Wu, S.; Sang, Y. Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders. Constr. Build. Mater. 2014, 66, 286–298. [Google Scholar] [CrossRef]
- Gong, M.; Yang, J.; Zhang, J.; Zhu, H.; Tong, T. Physical-chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Constr. Build. Mater. 2016, 105, 35–45. [Google Scholar] [CrossRef]
- Yuan, J.; Li, T.; Ya, X.; Li, H.; Sun, W. Evaluation of pine needle oil recycled asphalt: Rheological characterization and molecular dynamics simulation. Constr. Build. Mater. 2024, 453, 138980. [Google Scholar] [CrossRef]
- ASTM D6373-23; Standard Specification for Performance-Graded Asphalt Binder. ASTM International: West Conshohocken, PA, USA, 2023.
- Jesper, B.; Simon, I.A. Changes in asphaltene stability during hydrotreating. Energy Fuels 2000, 14, 52–55. [Google Scholar]
- Zhao, F.; Yan, J. Determination of the initial point of bituminous flocculation. China Offshore Oil Gas (Geol.) 2003, 3, 185–190. [Google Scholar]
- Fourest, J.M. Study of Asphaltenes Precipitation from Hamaca Crude Oil; University of the Andes: Mérida, Venezuela, 1995. [Google Scholar]
- ASTM D4740-04; Standard Guide for Selection of Test Methods for Asphalt Binder and Mixture Performance. ASTM International: West Conshohocken, PA, USA, 2014.
- Fabricio, A.; Eric, Y. Asphaltene flocculation, precipitation, and Liesegang ring. Energy Fuels 2004, 18, 1324–1328. [Google Scholar]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Pan, J.; Tarefder, R.A.; Hossain, M.I. Study of moisture impact on asphalt before and after oxidation using molecular dynamics simulations. Transp. Res. Rec. 2016, 2574, 38–47. [Google Scholar] [CrossRef]
- Pan, J.; Tarefder, R.A.; Hossain, M.I. Towards an understanding of diffusion mechanism of bio-rejuvenators in aged asphalt binder through molecular dynamics simulation. J. Clean. Prod. 2021, 299, 126927. [Google Scholar]
- Ding, H.; Wang, H.; Qu, X.; Varveri, A.; Gao, J.; You, Z. Study on conduction current characteristics of corona-resistant polyimide film before and after thermal aging. In Proceedings of the 2017 International Symposium on Electrical Insulating Materials (ISEIM), Toyohashi, Japan, 11–15 September 2017. [Google Scholar]
- Rogel, E.; León, O.; Contreras, E.; Carbognani, L.; Torres, G.; Espidel, J.; Zambrano, A. Assessment of asphaltene stability in crude oils using conventional techniques. Energy Fuels 2003, 17, 1583–1590. [Google Scholar] [CrossRef]
- Yuan, H.; Nili, A.; Chen, J.; Ding, H.; Liu, H.; Qiu, Y. Solubility and structural parameters of asphaltene subfractions separated from bitumen via an improved method. Fuel 2023, 344, 128113. [Google Scholar] [CrossRef]
- Chang, Q.; O’Rear, E.A., III; Ghos, S.; Zaman, M. An atomistic model of aged asphalt guided by the oxidation chemistry of benzylic carbon with application to asphalt rejuvenated with a triglyceride. Constr. Build. Mater. 2023, 400, 132743. [Google Scholar] [CrossRef]
- Ren, S.; Liu, X.; Lin, P.; Erkens, S.; Gao, Y. Chemical characterizations and molecular dynamics simulations on different rejuvenators for aged bitumen recycling. Fuel 2022, 324, 124550. [Google Scholar] [CrossRef]
Rejuvenator | Specific Gravity (g/cm3) | Colour | Molecular Weight | Viscosity at 60 °C (mPa·S) | Viscosity at 90 °C (mPa·S) |
---|---|---|---|---|---|
N-oil | 0.917 | pale yellow | 1431 | 20 | 10 |
F-oil | 0.951 | brown | 1965 | 24 | 11 |
W-oil | 0.966 | dark brown | 2320 | 284 | 80 |
A-oil | 0.987 | dark green | 639 | 192 | 46 |
Rejuvenator | C/% | H/% | O/% | C/H |
---|---|---|---|---|
N-oil | 80.47 | 11.56 | 6.58 | 0.58 |
F-oil | 79.74 | 10.99 | 7.26 | 0.60 |
W-oil | 77.77 | 10.31 | 10.26 | 0.63 |
A-oil | 85.51 | 9.46 | 4.65 | 0.75 |
Property | Virgin Asphalt | Aged Asphalt Binder |
---|---|---|
Penetration (25 °C, 5 s)/0.1 mm | 64.8 | 50.7 |
Ductility (10 °C)/cm | >100 | 6.5 |
Softening point/°C | 49.4 | 64.3 |
Molecules | Molecular Formula | Molecular Weight (Da) | Number of Molecules |
---|---|---|---|
asphaltene-A | C42H46O5 | 630.8 | 5 |
asphaltene-B | C66H67NO7 | 988.2 | 4 |
asphaltene-C | C51H54SO5 | 779 | 5 |
saturate-A | C30H62 | 422.8 | 5 |
saturate-B | C35H62 | 482.9 | 6 |
aromatic-A | C35H36O4 | 520.7 | 9 |
aromatic-B | C30H42O2 | 434.7 | 10 |
resin-A | C40H55NO2 | 581.9 | 6 |
resin-B | C40H56O3S | 616.9 | 6 |
resin-C | C18H10O2S2 | 322.4 | 18 |
resin-D | C36H53NO2 | 531.8 | 6 |
resin-E | C29H48O2 | 428.7 | 7 |
Parameters | N-Asphalt | F-Asphalt | W-Asphalt | A-Asphalt | Virgin Asphalt |
---|---|---|---|---|---|
Penetration (0.1 mm) | 64.8 | 64.8 | 64.8 | 64.8 | 64.8 |
Softening point (°C) | 54.1 | 53.2 | 53 | 51.6 | 49.4 |
Ductility (cm) | 7.9 | 8.5 | 10.5 | 10.2 | 100.8 |
Parameters | Aged N-asphalt | Aged F-asphalt | Aged W-asphalt | Aged A-asphalt | Aged asphalt |
Penetration (0.1 mm) | 58.8 | 56.2 | 52.5 | 48.6 | 50.7 |
Softening point (%) | 56.8 | 56.9 | 57.2 | 56.3 | 53.5 |
Ductility (cm) | 6.6 | 6.7 | 7.3 | 5.1 | 6.4 |
Type | Solubility Parameter (J/cm3)0.5 | Diversity (J/cm3)0.5 |
---|---|---|
Aromatic oil | 20.277 | 2.739 |
vegetable oil | 19.86 | 2.322 |
aged asphalt binder | 17.538 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Cao, X.; Wei, W.; Ding, Y.; Guo, J. Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis. Coatings 2025, 15, 917. https://doi.org/10.3390/coatings15080917
Yan H, Cao X, Wei W, Ding Y, Guo J. Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis. Coatings. 2025; 15(8):917. https://doi.org/10.3390/coatings15080917
Chicago/Turabian StyleYan, Heng, Xinxin Cao, Wei Wei, Yongjie Ding, and Jukun Guo. 2025. "Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis" Coatings 15, no. 8: 917. https://doi.org/10.3390/coatings15080917
APA StyleYan, H., Cao, X., Wei, W., Ding, Y., & Guo, J. (2025). Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis. Coatings, 15(8), 917. https://doi.org/10.3390/coatings15080917