Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices
Abstract
1. Introduction
2. Biomass-Derived Carbon
3. Application
3.1. LIBs
3.2. LSBs
3.2.1. Sulfur Host Materials
3.2.2. Biomass-Based Functional Binders
3.3. Supercapacitors
4. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, M.M.; Haque, R.; Jahirul, M.; Rasul, M.G.; Fattah, I.; Hassan, N.; Mofijur, M. Advancing energy storage: The future trajectory of lithium-ion battery technologies. J. Energy Storage 2025, 120, 116511. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, Y.; Qing, Y.; Ding, Y.; Wu, Y.; Li, L.; Luo, S.; Wu, Y. Recent advances in plant-derived porous carbon for lithium–sulfur batteries. J. Energy Storage 2024, 99, 113186. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, H.; Zhou, Q.; Liu, K.; Ma, W.; Fan, S. Biomass-derived carbon for supercapacitors electrodes–A review of recent advances. Inorg. Chem. Commun. 2023, 153, 110768. [Google Scholar] [CrossRef]
- Parvizi, P.; Jalilian, M.; Amidi, A.M.; Zangeneh, M.R.; Riba, J.-R. From Present Innovations to Future Potential: The Promising Journey of Lithium-Ion Batteries. Micromachines 2025, 16, 194. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Liu, J. Biomass-derived porous carbon materials for advanced lithium sulfur batteries. J. Energy Chem. 2019, 34, 171–185. [Google Scholar] [CrossRef]
- Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review. J. Energy Storage 2023, 61, 106716. [Google Scholar] [CrossRef]
- Li, Z.; Guo, D.; Liu, Y.; Wang, H.; Wang, L. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chem. Eng. J. 2020, 397, 125418. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, X.L.; Yang, Y.L.; Suo, G.; Zhang, L.; Lu, S.; Chen, Z.G. Biomass-derived carbon for high-performance batteries: From structure to properties. Adv. Funct. Mater. 2022, 32, 2201584. [Google Scholar] [CrossRef]
- Shrivastava, K.; Gill, F.S.; Juyal, S.; Lal, M.; Jain, A. Green Carbon for Clean Energy: Biomass-Derived Hierarchical Structures in Energy Storage. WIREs Energy Environ. 2025, 14, e70007. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, X.; Zhu, H.; Li, D.; Nie, Y.; Gao, B.; Xiang, G. Corn Silk-derived Biomass Carbon Materials for Low-Frequency Microwave Absorption and Energy Storage. Nanoscale 2025, 17, 6030–6038. [Google Scholar] [CrossRef] [PubMed]
- Karahan, B.D.; Gülcan, M.F. Boosting the electrochemical performance of ternary metal oxide anode in lithium-ion batteries via biomass-derived carbon nanodot modification. Ceram. Int. 2025, 51, 12785–12795. [Google Scholar] [CrossRef]
- Feng, A.; Zhu, X.; Chen, Y.; Liu, P.; Han, F.; Zu, Y.; Li, X.; Bi, P. Functional Biomass-Derived Materials for the Development of Sustainable Batteries. ChemElectroChem 2024, 11, e202400086. [Google Scholar] [CrossRef]
- Chen, R.; Shen, J.; Chen, K.; Tang, M.; Zeng, T. Metallic phase MoS2 nanosheet decorated biomass carbon as sulfur hosts for advanced lithium–sulfur batteries. Appl. Surf. Sci. 2021, 566, 150651. [Google Scholar] [CrossRef]
- Liedel, C. Sustainable battery materials from biomass. ChemSusChem 2020, 13, 2110–2141. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rentero, C.; Marangon, V.; Olivares-Marín, M.; Gómez-Serrano, V.; Caballero, Á.; Morales, J.; Hassoun, J. Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. J. Colloid Interface Sci. 2020, 573, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Baskar, A.V.; Singh, G.; Ruban, A.M.; Davidraj, J.M.; Bahadur, R.; Sooriyakumar, P.; Kumar, P.; Karakoti, A.; Yi, J.; Vinu, A. Recent progress in synthesis and application of biomass-based hybrid electrodes for rechargeable batteries. Adv. Funct. Mater. 2023, 33, 2208349. [Google Scholar] [CrossRef]
- Bandara, T.; Alahakoon, A.; Mellander, B.-E.; Albinsson, I. Activated carbon synthesized from Jack wood biochar for high performing biomass derived composite double layer supercapacitors. Carbon Trends 2024, 15, 100359. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, H.-M.; Jung, S.-C.; Chung, D.-C.; Kim, B.-J. Bamboo-based mesoporous activated carbon for high-power-density electric double-layer capacitors. Nanomaterials 2021, 11, 2750. [Google Scholar] [CrossRef]
- Suarso, E.; Setyawan, F.A.; Subhan, A.; Ramli, M.M.; Ismail, N.S.; Zainuri, M.; Arifin, Z.; Darminto. Enhancement of LiFePO4 (LFP) electrochemical performance through the insertion of coconut shell-derived rGO-like carbon as cathode of Li-ion battery. J. Mater. Sci. Mater. Electron. 2021, 32, 28297–28306. [Google Scholar] [CrossRef]
- Hou, J.; Mao, X.; Wang, J.; Liang, C.; Liang, J. Preparation of rice husk-derived porous hard carbon: A self-template method for biomass anode material used for high-performance lithium-ion battery. Chem. Phys. 2021, 551, 111352. [Google Scholar] [CrossRef]
- Sun, Q.; Cheng, X.; Ma, C.; Wang, J.; Qiao, W.; Ling, L. NiSe nanoparticles decorated corn stalk derived 2D carbon nanosheet as separator modifier for high-performance lithium-sulfur batteries. J. Power Sources 2023, 585, 233645. [Google Scholar] [CrossRef]
- Alouiz, I.; Aqil, M.; Dahbi, M.; Amarouch, M.Y.; Mazouzi, D. Performance of high-energy storage activated carbon derived from olive pomace biomass as an anode material for sustainable lithium-ion batteries. Resour. Chem. Mater. 2024, in press. [Google Scholar] [CrossRef]
- Byatarayappa, G.; Srilakshmi, R.; Tejashree, V.; Venkatesh, K.; Nagaraju, N.; Nagaraju, K. A comparative study on electrochemical performance of KOH activated carbons derived from different biomass sources-Musa acuminata stem, Pongamia pinnata seed oil extract cake, cajanus cajan stem and Asclepias syriaca floss. Heliyon 2023, 9, e15399. [Google Scholar] [CrossRef]
- Liu, A.; Liu, T.-F.; Yuan, H.-D.; Wang, Y.; Liu, Y.-J.; Luo, J.-M.; Nai, J.-W.; Tao, X.-Y. A review of biomass-derived carbon materials for lithium metal anodes. New Carbon Mater. 2022, 37, 658–674. [Google Scholar] [CrossRef]
- Silva, R.C.F.; de Freitas Filho, R.L.; dos Santos, K.S.; Gomes, I.B.; Marciano, A.C.; Anunciação, M.G.; Justino, D.D.; Gandra, F.G.; Cardoso, L.T.; Ramirez, R.S. Effect of CO2 activation on ordered mesoporous carbons obtained from tannin biomass for cathode support on stable lithium-sulfur batteries. Mater. Today Commun. 2025, 47, 113108. [Google Scholar] [CrossRef]
- Wu, Q.; Dou, X.; Liu, F.; He, J.; Zeng, T.; Zeng, T.; Luo, Y. Hierarchical porous biomass-derived electrodes with high areal loading for lithium–sulfur batteries. RSC Adv. 2025, 15, 17746–17754. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wu, Y.; Xu, X.; Ju, W.; Lei, W.; Wu, D.; Pan, J.; Ouyang, X. Surface-coated AlF3 nanolayers enable polysulfide confinement within biomass-derived nitrogen-doped hierarchical porous carbon microspheres for improved lithium-sulfur batteries. J. Colloid Interface Sci. 2024, 660, 657–668. [Google Scholar] [CrossRef]
- Yu, Q.-X.; Li, H.-X.; Wen, Y.-L.; Xu, C.-X.; Qin, S.-F.; Kuang, Y.-F.; Zhou, H.-H.; Huang, Z.-Y. The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries. New Carbon Mater. 2023, 38, 543–552. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, Y.; Zhao, L.; Liu, G. Preparing of N-P dual-doped auricularia auricula carbon host by yeast fermentation and its application in Li-S batteries. J. Saudi Chem. Soc. 2024, 28, 101820. [Google Scholar] [CrossRef]
- MD Zaini, M.S.M.; Anuar, N.F.; Al-Junid, S.A.M.; Syed-Hassan, S.S.A. Agricultural biomass-based carbon cathode materials for lithium-sulfur batteries: A systematic review. Mater. Sci. Energy Technol. 2023, 6, 205–225. [Google Scholar] [CrossRef]
- Ur Rehman, W.; Ma, Y.; Ait Laaskri, F.Z.; Xu, J.; Farooq, U.; Ghani, A.; Rehman, H.; Xu, Y. Biomass-derived carbon materials for batteries: Navigating challenges, structural diversities, and future perspective. Next Mater. 2025, 7, 100450. [Google Scholar] [CrossRef]
- Benítez, A.; Amaro-Gahete, J.; Chien, Y.-C.; Caballero, Á.; Morales, J.; Brandell, D. Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renew. Sustain. Energy Rev. 2022, 154, 111783. [Google Scholar] [CrossRef]
- Koech, A.K.; Mwandila, G.; Mulolani, F.; Mwaanga, P. Exploring the Anode Materials for Lithium-ion Batteries: A Review. Next Res. 2025, 3, 100442. [Google Scholar] [CrossRef]
- Xie, J.; Yin, J.; Xu, L.; Ahmed, A. Nanostructured anode materials for high-performance lithium-ion batteries. J. Alloys Compd. 2024, 1008, 176620. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Liu, R.; Li, X.; Wu, Y.; Ran, F. “Fast-charging” anode materials for lithium-ion batteries from perspective of ion diffusion in crystal structure. ACS Nano 2024, 18, 2611–2648. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Bo, X.; Xu, H.; Wang, L.; Daoud, W.A.; He, X. Advancing lithium-ion battery anodes towards a sustainable future: Approaches to achieve high specific capacity, rapid charging, and improved safety. Energy Storage Mater. 2024, 72, 103696. [Google Scholar] [CrossRef]
- Chang, H.; Wu, Y.-R.; Han, X.; Yi, T.-F. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Li, S.; Wang, K.; Zhang, G.; Li, S.; Xu, Y.; Zhang, X.; Zhang, X.; Zheng, S.; Sun, X.; Ma, Y. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater. 2022, 32, 2200796. [Google Scholar] [CrossRef]
- Hossain, M.H.; Chowdhury, M.A.; Hossain, N.; Islam, M.A.; Mobarak, M.H. Advances of lithium-ion batteries anode materials—A review. Chem. Eng. J. Adv. 2023, 16, 100569. [Google Scholar] [CrossRef]
- Wang, X.; Yao, X.; Sun, J.; Zhuo, J.; Tao, X.-S.; Li, X.; Sha, J. All biomass-derived autogenous nitrogen-doped porous carbon with pseudo-graphitic structure for advanced lithium-ion battery anodes. J. Power Sources 2025, 629, 235980. [Google Scholar] [CrossRef]
- Zhai, C.; He, P.; He, Y.; Wang, R.; Huang, H.; Chen, B.; Guo, Z.; Wang, X. Urchin flower-like SnO2 nanosheets anchored on waste biomass carbon as advanced anode for lithium-ion batteries. Ceram. Int. 2024, 50, 3546–3555. [Google Scholar] [CrossRef]
- Ge, H.; Xiu, Z.; Xie, L.; Pan, R.; Huang, B.; Cao, X.; Sun, Z. Modified conductive additives based on pine needle-derived biomass carbon for high-performance lithium-ion batteries. Biomass Bioenergy 2025, 200, 108008. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Su, Y.-S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134. [Google Scholar] [CrossRef]
- Manthiram, A.; Chung, S.-H.; Zu, C. Lithium–sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, B.-Q.; Zhang, X.-Q.; Huang, J.-Q.; Zhang, Q. A perspective toward practical lithium–sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, S.; Zhang, Y.; Li, M.; Chen, Z.; Lu, J. Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 2018, 30, 1705590. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Bai, X.; Gulzar, U.; Bai, Y.J.; Capiglia, C.; Deng, W.; Zhou, X.; Liu, Z.; Feng, Z.; Proietti Zaccaria, R. A comprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730. [Google Scholar] [CrossRef]
- Wild, M.; O’neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494. [Google Scholar] [CrossRef]
- Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436. [Google Scholar] [CrossRef]
- Li, C.; Xi, Z.; Guo, D.; Chen, X.; Yin, L. Chemical immobilization effect on lithium polysulfides for lithium–sulfur batteries. Small 2018, 14, 1701986. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Ji, H.; Zhou, J.; Qian, T.; Yan, C. Unity of opposites between soluble and insoluble lithium polysulfides in lithium–sulfur batteries. Adv. Mater. 2022, 34, 2203699. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Huang, J.-Q.; Zhang, Q. Review-Li metal anode in working lithium-sulfur batteries. J. Electrochem. Soc. 2017, 165, A6058. [Google Scholar] [CrossRef]
- Camacho-Forero, L.E.; Smith, T.W.; Bertolini, S.; Balbuena, P.B. Reactivity at the lithium–metal anode surface of lithium–sulfur batteries. J. Phys. Chem. C 2015, 119, 26828–26839. [Google Scholar] [CrossRef]
- Hou, L.-P.; Zhang, X.-Q.; Li, B.-Q.; Zhang, Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Mater. Today 2021, 45, 62–76. [Google Scholar] [CrossRef]
- Chen, X.; Hou, T.-Z.; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q. Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. 2017, 8, 194–201. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, T.; Liu, Y.; Nai, J.; Wang, Y.; Zhang, W.; Tao, X. A review of biomass materials for advanced lithium–sulfur batteries. Chem. Sci. 2019, 10, 7484–7495. [Google Scholar] [CrossRef]
- Imtiaz, S.; Zhang, J.; Zafar, Z.A.; Ji, S.; Huang, T.; Anderson, J.A.; Zhang, Z.; Huang, Y. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci. China Mater. 2016, 59, 389–407. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, J.; Dong, Z.; Liu, Y.; Wu, Y.; Xu, C.; Du, G. Biomass derived activated carbon with 3D connected architecture for rechargeable lithium− sulfur batteries. Electrochim. Acta 2014, 116, 146–151. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, S.; Huang, C.; Wang, X.; Cai, S.; Xiang, K.; Zhang, Y.; Xue, J. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium–sulfur batteries. ChemSusChem 2017, 10, 1803–1812. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, Z.; Zhang, X.; Ren, G.; Lai, Y.; Liu, Y.; Li, J. Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries. Carbon 2015, 84, 399–408. [Google Scholar] [CrossRef]
- Jo, S.; Hong, J.-W.; Momma, T.; Park, Y.; Heo, J.; Park, J.-W.; Ahn, S. Facile one-pot synthesis of biomass-derived activated carbon as an interlayer material for a BAC/PE/Al2O3 dual coated separator in Li–S batteries. RSC Adv. 2023, 13, 27274–27282. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, X.; Guo, R.; Li, F.; Li, T.; Wang, S.; Wang, S. Bifunctional tin modified SnO2 nanospheres embedded biomass-derived carbon network for polysulfides adsorption-conversion in lithium-sulfur batteries. J. Alloys Compd. 2022, 895, 162578. [Google Scholar] [CrossRef]
- Yang, J.; Wang, G.; Teixeira, A.P.; Silva, G.G.; Hansen, Z.; Jamal, M.J.M.; Mathew, K.; Xiong, J.; Zhou, T.; Mackowiak, M. A biomass-based cathode for long-life lithium-sulfur batteries. Electrochem. Commun. 2022, 140, 107325. [Google Scholar] [CrossRef]
- Bai, Z.; Fan, K.; Guo, M.; Wang, M.; Yang, T.; Wang, N. Rational design of a cost-effective biomass carbon framework for high-performance lithium sulfur batteries. Batteries 2023, 9, 594. [Google Scholar] [CrossRef]
- Xu, D.-W.; Xin, S.; You, Y.; Li, Y.; Cong, H.P.; Yu, S.H. Built-in carbon nanotube network inside a biomass-derived hierarchically porous carbon to enhance the performance of the sulfur cathode in a Li-S battery. ChemNanoMat 2016, 2, 712–718. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, G.; Li, M.; Liu, R.; Li, H.; Ren, P.; Dong, Y.; Feng, M.; Chen, Z. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium–sulfur batteries. J. Energy Chem. 2020, 44, 61–67. [Google Scholar] [CrossRef]
- Yuan, H.; Huang, J.Q.; Peng, H.J.; Titirici, M.M.; Xiang, R.; Chen, R.; Liu, Q.; Zhang, Q. A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 2018, 8, 1802107. [Google Scholar] [CrossRef]
- Qi, Q.; Lv, X.; Lv, W.; Yang, Q.-H. Multifunctional binder designs for lithium-sulfur batteries. J. Energy Chem. 2019, 39, 88–100. [Google Scholar] [CrossRef]
- Guo, R.; Yang, Y.; Huang, X.L.; Zhao, C.; Hu, B.; Huo, F.; Liu, H.K.; Sun, B.; Sun, Z.; Dou, S.X. Recent Advances in Multifunctional Binders for High Sulfur Loading Lithium-Sulfur Batteries. Adv. Funct. Mater. 2024, 34, 2307108. [Google Scholar] [CrossRef]
- Chen, W.; Qian, T.; Xiong, J.; Xu, N.; Liu, X.; Liu, J.; Zhou, J.; Shen, X.; Yang, T.; Chen, Y. A new type of multifunctional polar binder: Toward practical application of high energy lithium sulfur batteries. Adv. Mater. 2017, 29, 1605160. [Google Scholar] [CrossRef]
- Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium-sulfur battery. Adv. Energy Mater. 2018, 8, 1702889. [Google Scholar] [CrossRef]
- Xu, G.; Yan, Q.-B.; Kushima, A.; Zhang, X.; Pan, J.; Li, J. Conductive graphene oxide-polyacrylic acid (GOPAA) binder for lithium-sulfur battery. Nano Energy 2017, 31, 568–574. [Google Scholar] [CrossRef]
- Schneider, H.; Garsuch, A.; Panchenko, A.; Gronwald, O.; Janssen, N.; Novák, P. Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J. Power Sources 2012, 205, 420–425. [Google Scholar] [CrossRef]
- Wen, Y.; Lin, X.; Sun, X.; Wang, S.; Wang, J.; Liu, H.; Xu, X. A biomass-rich, self-healable, and high-adhesive polymer binder for advanced lithium-sulfur batteries. J. Colloid Interface Sci. 2024, 660, 647–656. [Google Scholar] [CrossRef]
- Ma, S.; Qiu, D.; Zhang, L.; Liu, X.; Ren, X.; Dai, J.; Gu, X.; Hou, Y. An Aqueous, Environmental-Friendly, and Flame-Retardant Biomass-Derived Binder for High-Safe, High-Rate, and Long-Life Lithium–Sulfur Batteries. Adv. Funct. Mater. 2025, 2503333. [Google Scholar] [CrossRef]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Benoy, S.M.; Pandey, M.; Bhattacharjya, D.; Saikia, B.K. Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. J. Energy Storage 2022, 52, 104938. [Google Scholar] [CrossRef]
- Mohd Abdah, M.A.A.M.; Azman, N.H.N.; Kulandaivalu, S.; Sulaiman, Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 2020, 186, 108199. [Google Scholar] [CrossRef]
- Balasubramanian, D.; Varadharajan, H.; Venugopal, I.P. Biomass-derived porous carbon from banana leaves for efficient supercapacitor applications–An experimental analysis. Biomass Bioenergy 2025, 201, 108104. [Google Scholar] [CrossRef]
- Singh, J.; Dey, B.; Alwi, M.M.A.; Hossain, S.S.; Choudhury, A.; Niaz, A.; Khan, H.; Yang, D.-J. Waste Biomass-derived N, S-codoped Porous Carbon Flakes for High Energy Density Asymmetric Supercapacitors. Solid State Sci. 2025, 168, 108014. [Google Scholar] [CrossRef]
- You, X.; Duan, J.; Koda, K.; Yamada, T.; Uraki, Y. Preparation of electric double layer capacitors (EDLCs) from two types of electrospun lignin fibers. Holzforschung 2016, 70, 661–671. [Google Scholar] [CrossRef]
- Daraghmeh, A.; Hussain, S.; Saadeddin, I.; Servera, L.; Xuriguera, E.; Cornet, A.; Cirera, A. A study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: A comparative study. Nanoscale Res. Lett. 2017, 12, 639. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Misra, M.; Gregori, S.; Mohanty, A.K. Preparation of an electric double layer capacitor (EDLC) using miscanthus-derived biocarbon. ACS Sustain. Chem. Eng. 2018, 6, 318–324. [Google Scholar] [CrossRef]
- Hao, Z.-Q.; Cao, J.-P.; Wu, Y.; Zhao, X.-Y.; Zhou, L.; Fan, X.; Zhao, Y.-P.; Wei, X.-Y. Preparation of porous carbons from waste sugar residue for high performance electric double-layer capacitor. Fuel Process Technol. 2017, 162, 45–54. [Google Scholar] [CrossRef]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Forouzandeh, P.; Kumaravel, V.; Pillai, S.C. Electrode materials for supercapacitors: A review of recent advances. Catalysts 2020, 10, 969. [Google Scholar] [CrossRef]
- Chatterjee, D.P.; Nandi, A.K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880–15918. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Xie, Y.; Guo, E.; Bai, H.; Jiang, F.; Li, Q.; Yue, H. Design and Fabrication of Island-Like CoNi2S4@NiCo-LDH/Biomass Carbon Heterostructure as Advanced Electrodes for High-Performance Hybrid Supercapacitors. Adv. Energy Mater. 2024, 14, 2400493. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, S.; Xu, C.; Jia, B.; Ren, S.; Zheng, W.; Huang, Y.; Jiang, K.; Zhang, X.; Zhao, Y. Synthesis and performances of biomass carbon@Li(Ni0.6Co0.4)O2 micron-tube as electrode material in aqueous lithium-ion hybrid supercapacitors. J. Alloys Compd. 2025, 1017, 179065. [Google Scholar] [CrossRef]
Precursor | Active Agents | Temperature (°C) | SBET (m2 g−1) | Ref. |
---|---|---|---|---|
Jack wood biochar | NaOH | 800 °C | − | [17] |
Bamboo | Steam | 900 °C | 1120 | [18] |
Rice husk | NaOH | 800 °C | 254.9 | [20] |
Corn stalk | NaOH | 800 °C | 254.9 | [21] |
Olive pomace | H3PO4 | 500 °C | 10.6 | [22] |
Chestnut shell | KOH | 600 °C | 1394.95 | [24] |
Tannin | CO2 | 900 °C | 1370 | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, Y.-S.; Seo, S.W.; Yang, J.-j.; Jeong, M.; Ahn, S. Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices. Coatings 2025, 15, 915. https://doi.org/10.3390/coatings15080915
Oh Y-S, Seo SW, Yang J-j, Jeong M, Ahn S. Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices. Coatings. 2025; 15(8):915. https://doi.org/10.3390/coatings15080915
Chicago/Turabian StyleOh, Yeong-Seok, Seung Woo Seo, Jeong-jin Yang, Moongook Jeong, and Seongki Ahn. 2025. "Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices" Coatings 15, no. 8: 915. https://doi.org/10.3390/coatings15080915
APA StyleOh, Y.-S., Seo, S. W., Yang, J.-j., Jeong, M., & Ahn, S. (2025). Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices. Coatings, 15(8), 915. https://doi.org/10.3390/coatings15080915