Effect of a Protein–Polysaccharide Coating on the Physicochemical Properties of Banana (Musa paradisiaca) During Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Coating Design
2.2. Physical Analysis
2.2.1. Weight Variation
2.2.2. Fruit Dimensions
2.2.3. Firmness
2.2.4. Color
2.3. Chemical Analysis
2.3.1. pH
2.3.2. Titratable Acidity
2.3.3. Soluble Solids
3. Results
3.1. Physical Analysis
3.1.1. Weight Variation
3.1.2. Fruit Dimensions
3.1.3. Firmness
3.1.4. Color
3.2. Chemical Analysis
3.2.1. pH
3.2.2. Titratable Acidity
3.2.3. Soluble Solids
4. Discussion
4.1. Physical Analysis
4.1.1. Weight Loss
4.1.2. Fruit Dimensions
4.1.3. Firmness
4.1.4. Color Parameters
4.2. Chemical Analysis
4.2.1. pH
4.2.2. Titratable Acidity
4.2.3. Soluble Solids
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capa Benítez, L.B.; Alaña Castillo, T.P.; Benítez Narváez, R.M. Importancia de la producción de banano orgánico. Caso: Provincia El Oro, Ecuador. Rev. Univ. Y Soc. 2016, 8, 64–71. [Google Scholar]
- Agronomía Costarricense. Tecnología Poscosecha. Agron. Costarric. 2005, 29, 207–209. [Google Scholar]
- Ruiz Medina, M.D.; Ruales, J. Postharvest Alternatives in Banana Cultivation. Agronomy 2024, 14, 2109. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Palma, R.M.M.; Pérez, A.A.F.; Padilla, M.C. Recubrimientos comestibles para extender la vida de anaquel de productos hortofrutícolas. Cienc. Lat. Rev. Cient. Multidiscip. 2021, 5, 4605–4625. [Google Scholar] [CrossRef]
- Alzate Acevedo, S.; Díaz Carrillo, Á.J.; Flórez-López, E.; Grande-Tovar, C.D. Recovery of Banana Waste-Loss from Production and Processing: A Contribution to a Circular Economy. Molecules 2021, 26, 5282. [Google Scholar] [CrossRef]
- Bello-Lara, J.E.; Balois-Morales, R.; Juárez-López, P.; Alia-Tejacal, I.; Peña-Valdivia, C.B.; Jiménez-Zurita, J.O.; Sumaya-Martínez, M.T.; Jiménez-Ruíz, E.I. Coatings based on starch and pectin from ‘Pear’ banana (Musa ABB), and chitosan applied to postharvest ‘Ataulfo’ mango fruit. Rev. Chapingo Ser. Hortic. 2016, 22, 209–218. [Google Scholar] [CrossRef]
- Arce Ortiz, K.L.; Ortega Villalba, K.J.; Ochoamartinez, C.I.; Vélez Pasos, C. Postharvest properties of banana gross michel coated with whey protein and chitosan. Vitae 2016, 23, S749–S753. [Google Scholar]
- Odetayo, T.; Sithole, L.; Shezi, S.; Nomngongo, P.; Tesfay, S.; Ngobese, N.Z. Effect of nanoparticle-enriched coatings on the shelf life of Cavendish bananas. Sci. Hortic. 2022, 304, 111312. [Google Scholar] [CrossRef]
- Ruiz, M.; Ávila, J.; Ruales, J. Diseño de un recubrimiento comestible bioactivo para aplicarlo en la frutilla (Fragaria vesca) como proceso de postcosecha. Rev. Iberoam. Tecnol. Postcosecha 2016, 17, 276–287. [Google Scholar]
- Freire Le, S.S.; Da Boa Morte, E.S.; Rebelo, M.F.; Andrade, L.L.; Allahdadi, K.J.; Pereira da Fonseca, M.C.; Pinto Matos, L.C. Applications and Impacts of Edible Coatings on Food Quality. Food Sci. Eng. 2024, 5, 241–432. [Google Scholar] [CrossRef]
- Armghan Khalid, M.; Niaz, B.; Saeed, F.; Afzaal, M.; Islam, F.; Hussain, M.; Mahwish; Salman Khalid, H.M.; Siddeeg, A.; Al-Farga, A. Edible coatings for enhancing safety and quality attributes of fresh produce: A comprehensive review. Int. J. Food Prop. 2022, 25, 1817–1847. [Google Scholar] [CrossRef]
- Peralta, A.V.P.; Cuzco, J.I.C.; Álvarez, L.F.A. El almidón, su uso y efecto como recubrimiento comestible en la conservación de frutas. Cienc. Digit. 2024, 8, 144–160. [Google Scholar] [CrossRef]
- Aguilar-Duran, J.A.; García León, I.; Quiroz Velásquez, J.D.C. Alargamiento de la Vida de Anaquel de las Frutas por El Uso de Biopelículas. Rev. Boliv. Quim. 2020, 37, 40–45. [Google Scholar] [CrossRef]
- Fernández, N.M.; Echeverria, D.C.; Mosquera, S.A.; Paz, S.P. Estado Actual del Uso de Recubrimientos Comestibles en Frutas y Hortalizas. Biotecnol. Sect. Agropecu. Agroindustrial 2017, 15, 134–141. [Google Scholar] [CrossRef]
- López, E.M.; Díaz, R.F. Optimization of edible coatings for bananas: Effects on firmness and color retention. Food Sci. Technol. Int. 2019, 25, 592–601. [Google Scholar]
- Assis, O.B.G.; De Britto, D. Revisão: Coberturas comestíveis protetoras em frutas: Fundamentos e aplicações. Braz. J. Food Technol. 2014, 17, 87–97. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Pérez-Larios, A.; Ruvalcaba-Gómez, J.M.; Sánchez-Burgos, J.A.; Romero-Toledo, R.; Montalvo-González, E. Funcionalización de los recubrimientos a base de quitosano para la conservación postcosecha de frutas y hortalizas. TIP Rev. Espec. Cienc. Quim.-Biol. 2020, 23. [Google Scholar] [CrossRef]
- Nischitha, R.; Shravya; Pooja, D.V.; Mahesh, S. Impact of Edible Coating in Extending the Shelf life of Post-harvested Banana under Storage Condition. Biol. Forum—Int. J. 2023, 15, 76–81. [Google Scholar]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Himanshu Maru, M.; Goswami, B. The role of food packaging. In Global Challenges and Innovation in Science and Management; Goswami, B., Ed.; KAAV Publications: Delhi, India, 2019. [Google Scholar]
- Chiriboga, J. Hacia una agricultura más sostenible: Recubrimientos comestibles naturales para extender la vida útil de las frutas. Vitaly Sci. Rev. Cient. Multidiscip. 2025, 2, 18–32. [Google Scholar] [CrossRef]
- Al-Dairi, M.; Pathare, P.B.; Al-Yahyai, R.; Jayasuriya, H.; Al-Attabi, Z. Postharvest quality, technologies, and strategies to reduce losses along the supply chain of banana: A review. Trends Food Sci. Technol. 2023, 134, 177–191. [Google Scholar] [CrossRef]
- FAO. Food Loss and Waste in the Context of Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Elsayed, N.; Hassan, A.A.-M.; Abdelaziz, S.M.; Abdeldaym, E.A.; Darwish, O.S. Effect of Whey Protein Edible Coating Incorporated with Mango Peel Extract on Postharvest Quality, Bioactive Compounds and Shelf Life of Broccoli. Horticulturae 2022, 8, 770. [Google Scholar] [CrossRef]
- Shinga, M.H.; Silue, Y.; Fawole, O.A. Recent Advancements and Trends in Postharvest Application of Edible Coatings on Bananas: A Comprehensive Review. Plants 2025, 14, 581. [Google Scholar] [CrossRef]
- Blancas-Benitez, F.J.; Montaño-Leyva, B.; Aguirre-Güitrón, L.; Moreno-Hernández, C.L.; Fonseca-Cantabrana, Á.; Romero-Islas, L.d.C.; González-Estrada, R.R. Impact of edible coatings on quality of fruits: A review. Food Control. 2022, 139, 109063. [Google Scholar] [CrossRef]
- Ruiz Medina, M.D.; Ruales, J. Essential Oils as an Antifungal Alternative to Control Several Species of Fungi Isolated of Musa paradisiaca: Part II. Preprints 2025. [Google Scholar] [CrossRef]
- Ruiz Medina, M.D.; Ruales, J. Essential Oils as an Antifungal Alternative to Control Cladosporium spp., Lasiodiplodia spp., Colletotrichum spp., Fusarium spp. and Aspergillus spp. Isolated of Musa paradisiaca. Preprints 2024. [Google Scholar] [CrossRef]
- Ruiz-Medina, M.; Ruales, J. Essential Oils as an Antifungal Alternative to Control Fusarium spp., Penicillium spp., Trichoderma spp. and Aspergillus spp. Preprints 2024. [Google Scholar] [CrossRef]
- FAO. Prevencion de Perdidas de Alimentos Poscosecha: Frutas, Hortalizas, Raices y Tuberculos. Manual De Capacitacion; Food & Agriculture Org.: Rome, Italy, 1993. [Google Scholar]
- Borges, C.V.; Amorim, E.P.; Leonel, M.; Gomez, H.A.G.; dos Santos, T.P.R.; da Silva Ledo, C.A.; Filiol Belin, M.A.; de Almeida, S.L.; Minatel, I.O.; Pereira Lima, G.P. Post-harvest physicochemical profile and bioactive compounds of 19 bananas and plantains genotypes. Bragantia 2018, 78, 284–296. [Google Scholar] [CrossRef]
- Pico Poma, J.P.; Sarabia Guevara, D.A.; Vargas Peralvo, E.A. Recubrimientos comestibles: Una alternativa para la conservación de frutas. Opuntia Brava 2023, 15, 313–327. [Google Scholar]
- International AOAC. 981.12: pH of Food. In Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 1981. [Google Scholar]
- International AOAC. 942.15: Titratable Acidity in Fruits. In Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 1997. [Google Scholar]
- International AOAC. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Arlington, VA, USA, 1997. [Google Scholar]
- Sanchez-Tamayo, M.; Plaza-Dorado, J.L.; Ochoa-Martínez, C. Influence of Composite Edible Coating of Pectin, Glycerol, and Oregano Essential Oil on Postharvest Deterioration of Mango Fruit. Food Sci. Nutr. 2024, 12, 10646–10654. [Google Scholar] [CrossRef]
- Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem. 2011, 124, 620–626. [Google Scholar] [CrossRef]
- Fernández Valdés, D.; Bautista Baños, S.; Fernández Valdés, D.; Ocampo Ramírez, A.; García Pereira, A.; Falcón Rodríguez, A. Películas y recubrimientos comestibles: Una alternativa favorable en la conservación poscosecha de frutas y hortalizas. Rev. Cienc. Téc. Agropecu. 2015, 24, 52–57. [Google Scholar]
- Muñoz, D.; Aguilar, P.; Wong, J.; Rojas, R. Aplicación de recubrimientos comestibles a base de pectina, glicerol y cera de candelilla en frutos cultivados en la Huasteca Potosina. Cienc. Nat. Agropecu. 2017, 4, 20–28. [Google Scholar]
- Ramos, M.; Romero, C.; Bautista, S. Almidón Modificado: Propiedades y Usos Como Recubrimientos Comestibles Para la Conservación de Frutas y Hortalizas Frescas; Ibero-American Association of Postharvest Technology (AITEP): Hermosillo, Mexico, 2018; p. 19. [Google Scholar]
- Maqbool, M.; Ali, A.; Ramachandran, S.; Smith, D.R.; Alderson, P.G. Control of postharvest anthracnose of banana using a new edible composite coating. Crop Prot. 2010, 29, 1136–1141. [Google Scholar] [CrossRef]
- Mera, G.C.; Tandalla, J.V.G.; Carvajal, E.R.C.; Ordoñez, O.A.A. Factores Determinantes en el Proceso de Maduración y su Relación con Los Diferentes Cambios en Frutas y Hortalizas. Reciena 2024, 4, 79–86. [Google Scholar] [CrossRef]
- Olivas, G.I.; Barbosa-Cánovas, G.V. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. Nutr. 2008, 48, 496–511. [Google Scholar] [CrossRef]
- Púa-Rosado, A.L.; Rodríguez-Sánchez, J.L.; Muñoz-Acevedo, A. Caracterización química de pulpas de frutas tropicales: Chemical characterization of tropical fruits. Cienc. Tecnol. Aliment. 2020, 30, 29–32. [Google Scholar]
- Alvarez, L.F.A.; Maya, C.F.H.; Troya, E.T.T.; Luzuriaga, S.A.G. Estudio del Efecto del Pardeamiento Enzimático en La Calidad Nutricional del Banano (Musa paradisiaca L.). Reciena 2023, 3, 15–21. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT—Food Sci. Technol. 2008, 41, 146–156. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Gao, H.; Shen, Y.; Li, C.; Yi, P.; He, X.; Ling, D.; Sheng, J.; Li, J.; et al. Effects of Polysaccharide-Based Edible Coatings on Quality and Antioxidant Enzyme System of Strawberry during Cold Storage. Int. J. Polym. Sci. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Akhtar, M.; Khan, M.R.; Hussain, S. Impact of edible coatings on the preservation of postharvest fruit quality. Int. J. Food Sci. Technol. 2020, 55, 3424–3431. [Google Scholar] [CrossRef]
- Rosero, A.; Espinoza Montero, P.; Fernández, L. Recubrimientos comestibles con materiales micro/nanoestructurados para la conservación de frutas y verduras: Una revisión. Infoanalítica 2020, 8, 149–178. [Google Scholar]
Treatments | Whey (g) | Agar (g) | Cassava Starch (g) | Glycerol (g) |
---|---|---|---|---|
T1 | 5 | 5 | 5 | 5 |
T2 | 5 | 5 | 5 | 10 |
T3 | 5 | 5 | 5 | 15 |
T4 | 5 | 5 | 10 | 5 |
T5 | 5 | 5 | 10 | 10 |
T6 | 5 | 5 | 10 | 15 |
T7 (Control) | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz Medina, M.D.; Quimbita Yupangui, Y.; Ruales, J. Effect of a Protein–Polysaccharide Coating on the Physicochemical Properties of Banana (Musa paradisiaca) During Storage. Coatings 2025, 15, 812. https://doi.org/10.3390/coatings15070812
Ruiz Medina MD, Quimbita Yupangui Y, Ruales J. Effect of a Protein–Polysaccharide Coating on the Physicochemical Properties of Banana (Musa paradisiaca) During Storage. Coatings. 2025; 15(7):812. https://doi.org/10.3390/coatings15070812
Chicago/Turabian StyleRuiz Medina, Maritza D., Yadira Quimbita Yupangui, and Jenny Ruales. 2025. "Effect of a Protein–Polysaccharide Coating on the Physicochemical Properties of Banana (Musa paradisiaca) During Storage" Coatings 15, no. 7: 812. https://doi.org/10.3390/coatings15070812
APA StyleRuiz Medina, M. D., Quimbita Yupangui, Y., & Ruales, J. (2025). Effect of a Protein–Polysaccharide Coating on the Physicochemical Properties of Banana (Musa paradisiaca) During Storage. Coatings, 15(7), 812. https://doi.org/10.3390/coatings15070812