Improved Properties of Ceramic Shells by Optimizing the Surface Composition from Lanthanide-Based Composites
Abstract
1. Introduction
2. Experimental Section
2.1. Raw Materials
2.2. Sintering Process of Ceramic Powder
2.3. Preparation of Ceramic Shell
2.4. Characterization
3. Results
3.1. Experimental Data Characterization
3.1.1. Characterization of LaAlO3 Powders
3.1.2. Analysis of Slurry Performance
3.1.3. Analysis of Sintering Properties of LaAlO3 Shells
3.1.4. Characterization of Mixed Powders
3.1.5. Comparative Analysis of Three Types of Molds
3.2. Properties and Applications of Ceramic Shells
4. Conclusions
- This study investigated the sintering of LaAlO3 powder, the properties of the prepared surface slurry, and the refractoriness of the composite shell. The refractoriness of the composite shell was improved by introducing La2Si2O7 and LaAl11O18 to replace LaAlO3. Three types of shells were used to cast CMSX-4 alloy, and the interface reactions were observed. The study employed scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) to assess the microstructure and phase composition of the powders, shell surfaces, and interfaces after alloy casting. The main findings and conclusions are summarized as follows: The La2O3-Al2O3 system yields high-purity LaAlO3 powder when sintered at 1500 °C. A slurry with a powder-to-liquid ratio of 3:1 and 300-mesh particle size demonstrates optimal coating performance, forming a shell that remains crack-free at 1300 °C. However, at temperatures exceeding 1400 °C, LaAlO3 reacts with SiO2 to generate La2Si2O7 and Al2O3, leading to failure of the face coat due to lattice distortion and volumetric shrinkage.
- Through optimization of the La2O3-Al2O3-SiO2 ternary ratio, the LAS shell, containing a La2Si2O7 phase in its face coat, buffers thermal stress and remains crack-free at 1400 °C. Meanwhile, the LA11S shell exhibits a layered LaAl11O18 structure that suppresses oxygen diffusion and grain coarsening. At 1500 °C, this shell maintains excellent surface quality, meeting the stringent requirements for single-crystal superalloy casting applications.
- After casting CMSX-4 recycled material with LA crucibles, spalled LaAlO3 particles adhere to the alloy surface, while LAS and LA11S shells exhibit NiO formation. All three crucibles develop Al2O3 slag layers with thicknesses below 5 μm. Notably, no severe interfacial reactions occur between the crucibles and the alloy melt; instead, only dissolution-dominated interactions are observed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Tan, Y.; Wang, D.; Li, P.; Chen, Z.; Zhao, J.; Qiang, J. Effect of trace impurity elements on the wettability and interfacial reaction between DZ125 alloy and ceramic shell. Corros. Sci. 2023, 221, 111370. [Google Scholar] [CrossRef]
- Xia, W.; Zhao, X.; Yue, L.; Zhang, Z. A review of composition evolution in Ni-based single crystal superalloys. J. Mater. Sci. Technol. 2020, 44, 76–95. [Google Scholar] [CrossRef]
- Wang, H.; Shang, G.; Liao, J.; Yang, B.; Yuan, C. Experimental investigations and thermodynamic calculations of the interface reactions between ceramic moulds and Ni-based single-crystal superalloys: Role of solubility of Y in the LaAlO3 phase. Ceram. Int. 2018, 44, 7667–7673. [Google Scholar] [CrossRef]
- Yao, J.S.; Dong, L.P.; Wang, L.L.; Yang, S.; Yang, W.; Wang, Z.L.; Shen, B. Interface reaction between DD6 single crystal superalloy and Ceramic Core. In Proceedings of the Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2021; pp. 297–304. [Google Scholar]
- Li, Q.; Song, J.; Wang, D.; Yu, Q.; Xiao, C. Effect of Cr, Hf and temperature on interface reaction between nickel melt and silicon oxide core. Rare Met. 2011, 30, 405–409. [Google Scholar] [CrossRef]
- Rabah, M.; Ewais, E.M.M. Multi-impregnating pitch-bonded Egyptian dolomite refractory brick for application in ladle furnaces. Ceram. Int. 2009, 35, 813–819. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Wang, L.; Long, X.; Chen, C.; Qin, Z. Study on the stability of different refractories during the melting process of a K4169 Ni-based superalloy. Ceram. Int. 2023, 49, 29573–29583. [Google Scholar] [CrossRef]
- Pisarski, W.A. Rare Earth Doped Glasses/Ceramics: Synthesis, Structure, Properties and Their Optical Applications. Materials 2022, 15, 8099. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Cai, Y.; Ma, Y.; Wang, B.; Zhang, W.; Karlsson, M.; Wu, Y.; Zhu, B. Natural Mineral-Based Solid Oxide Fuel Cell with Heterogeneous Nanocomposite Derived from Hematite and Rare-Earth Minerals. ACS Appl. Mater. Interfaces 2016, 8, 20748–20755. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.R.; Mariappan, L. Combustion synthesis and characterisation of lanthanum hexa-aluminate. Adv. Appl. Ceram. 2013, 104, 268–271. [Google Scholar] [CrossRef]
- Lee, M.-H.; Jung, W.-S. Facile synthesis of LaAlO3 and Eu(II)-doped LaAlO3 powders by a solid-state reaction. Ceram. Int. 2015, 41, 5561–5567. [Google Scholar] [CrossRef]
- Liu, Q.; Chang, Q.; Li, J.; You, Z.; Peng, J.; Chen, J. Infrared radiation performance and calculation of B-site doped lanthanum aluminate from first principles. Ceram. Int. 2018, 44, 11570–11575. [Google Scholar] [CrossRef]
- Ianoş, R.; Lazău, R.; Borcănescu, S.; Băbuță, R. Single-step combustion synthesis of LaAlO3 powders and their sintering behavior. Ceram. Int. 2014, 40, 7561–7565. [Google Scholar] [CrossRef]
- Chandradass, J.; Balasubramanian, M.; Kim, K.H. Synthesis and Characterization of LaAlO3 Nanopowders by Various Fuels. Mater. Manuf. Process. 2010, 25, 1449–1453. [Google Scholar] [CrossRef]
- Chen, H.; Yang, C.; Zhang, J.; He, W.; Liao, Y.; Zhang, Q.; Zheng, S.; Lei, G. High performance distributed CPW phase shifters with etched BST thin films on Φ 3″ LaAlO3 substrates. Solid State Sci. 2012, 14, 117–120. [Google Scholar] [CrossRef]
- Cinibulk, M.K. Thermal stability of some hexaluminates at 1400 °C. J. Mater. Sci. Lett. 1995, 14, 651–654. [Google Scholar] [CrossRef]
- Reddy, S.P.; Sairam, Y.N.V.; Shaik, M.H.; Kumar, P.R.; Yamini, T.; Saisree, M.M.; Raju, N. Preparation and Experimental Investigation of Lanthanum Hexa-Aluminate Calcinated Powders. Ann. Chim.-Sci. Matériaux 2025, 49, 63–70. [Google Scholar] [CrossRef]
- Iketani, K.; Yoshinaka, M.; Hirota, K.; Yamaguchi, O. Low-temperature synthesis and sintering of LaAlO3. J. Mater. Sci. Lett. 2001, 20, 2045–2046. [Google Scholar] [CrossRef]
- John Berchmans, L.; Angappan, S.; Visuvasam, A.; Ranjith Kumar, K.B. Preparation and characterization of LaAlO3. Mater. Chem. Phys. 2008, 109, 113–118. [Google Scholar] [CrossRef]
- Li, A.-D.; Shao, Q.-Y.; Ling, H.-Q.; Cheng, J.-B.; Wu, D.; Liu, Z.-G.; Ming, N.-B.; Wang, C.; Zhou, H.-W.; Nguyen, B.-Y. Characteristics of LaAlO3 gate dielectrics on Si grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2003, 83, 3540–3542. [Google Scholar] [CrossRef]
- Rizwan, M.; Gul, S.; Iqbal, T.; Mushtaq, U.; Farooq, M.H.; Farman, M.; Bibi, R.; Ijaz, M. A review on perovskite lanthanum aluminate (LaAlO3), its properties and applications. Mater. Res. Express 2019, 6, 112001. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Zhu, Y. Effect of CoO–NiO additives on the microstructure and mechanical properties of microcrystalline corundum abrasives with in-situ formed needle-shaped LaAl11O18. Ceram. Int. 2022, 48, 33794–33800. [Google Scholar] [CrossRef]
- Mühler, T.; Gomes, C.M.; Heinrich, J.; Günster, J. Slurry-Based Additive Manufacturing of Ceramics. Int. J. Appl. Ceram. Technol. 2013, 12, 18–25. [Google Scholar] [CrossRef]
- Neto, R.; Duarte, T.; Alves, J.L.; Torres, F. Experimental characterization of ceramic shells for investment casting of reactive alloys. Ciência Tecnol. Dos Mater. 2017, 29, e34–e39. [Google Scholar] [CrossRef]
- Venkat, Y.; Choudary, K.R.; Chatterjee, D.; Das, D.K.; Pandey, A.K.; Singh, S. Development of mullite-alumina ceramic shells for precision investment casting of single-crystal high-pressure turbine blades. Ceram. Int. 2022, 48, 28199–28206. [Google Scholar] [CrossRef]
- Zhao, D.; Su, H.; Hao, S.; Shen, Z.; Liu, Y.; Guo, Y.; Yang, P.; Zhang, Z.; Guo, M. Excellent thermal stability of nanostructured Al2O3–Y3Al5O12–ZrO2 eutectic ceramic composites by high-speed directional solidification. Compos. Part B Eng. 2023, 266, 111035. [Google Scholar] [CrossRef]
- Tzvetkov, G.; Minkova, N. Application of mechanochemical treatment to the synthesis of A-and G-forms of La2Si2O7. Solid State Ion. 1999, 116, 241–248. [Google Scholar] [CrossRef]
- Kokini, K.; DeJonge, J.; Rangaraj, S.; Beardsley, B. Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surf. Coat. Technol. 2002, 154, 223–231. [Google Scholar] [CrossRef]
- Kvernes, I.; Forseth, S. Corrosion mechanisms of ceramic coatings in diesel engines. Mater. Sci. Eng. 1987, 88, 61–67. [Google Scholar] [CrossRef]
- Weihao, H.; Jianbo, Y.; Zhongming, R. Effect of La on Mould Wettability and Interfacial Reaction between CMSX-4 Single Crystal Alloy and Ceramic Mould. Spec. Steel 2024, 45, 104. [Google Scholar]
- Wu, Y.-Q.; Zhang, Y.-F.; Wang, S.-W.; Guo, J.-K. In-situ synthesis of rodlike LaAl11O18 in Al2O3 powder by a coprecipitation method. J. Eur. Ceram. Soc. 2001, 21, 919–923. [Google Scholar] [CrossRef]
- Negahdari, Z.; Willert-Porada, M.; Pfeiffer, C. Mechanical properties of dense to porous alumina/lanthanum hexaaluminate composite ceramics. Mater. Sci. Eng. A 2010, 527, 3005–3009. [Google Scholar] [CrossRef]
- Machida, M.; Eguchi, K.; Arai, H. Analytical Electron Microscope Analysis of the Formation of BaO·6Al2O3. J. Am. Ceram. Soc. 2005, 71, 1142–1147. [Google Scholar] [CrossRef]
- Gadow, R.; Lischka, M. Lanthanum hexaaluminate—Novel thermal barrier coatings for gas turbine applications—Materials and process development. Surf. Coat. Technol. 2002, 151–152, 392–399. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cem. Concr. Res. 2004, 34, 1065–1069. [Google Scholar] [CrossRef]
- Lapin, J.; Gabalcová, Z.; Pelachová, T. Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti–46Al–8Nb alloy. Intermetallics 2011, 19, 396–403. [Google Scholar] [CrossRef]
- Saha, R.; Nandy, T.; Misra, R.; Jacob, K. Evaluation of the reactivity of titanium with mould materials during casting. Bull. Mater. Sci. 1989, 12, 481–493. [Google Scholar] [CrossRef]
- Xuan, W.; Du, L.; Song, G.; Zhang, X.; Zhang, H.; Ren, Z. Some new observations on interface reaction between nickel-based single crystal superalloy CMSX-4 and silicon oxide ceramic core. Corros. Sci. 2020, 177, 108969. [Google Scholar] [CrossRef]
Materials | Liquid Color | PH | Density/g·cm−3 | Viscosity/mPa·s | Manufacturer |
---|---|---|---|---|---|
Silica sol | Clear | 6.0–8.0 | 2.0 | 30 | Shanghai Bohuai Chemical Co., Ltd., China |
Defoamer | White milky | 6.0–8.0 | 0.97 | 26 | China Wuhan Zhuoyan Co., Ltd., China |
Wetting agent | Clear | 5.0–7.0 | 0.95 | 98 | China Wuhan Zhuoyan Co., Ltd., China |
Element | Al | Co | Cr | Ta | Re | Ti | W | Mo | Hf | Ni |
---|---|---|---|---|---|---|---|---|---|---|
content | 5.5 | 9.0 | 6.5 | 6.5 | 3.0 | 1.0 | 6.0 | 0.6 | 0.1 | Bal. |
Layers | Slurry | Sand | Viscosity /mPa·s | Dry Times/h |
---|---|---|---|---|
Transition | 25% Silica sol, wetting agent, anti-foam agent | EC95, 30–60 mesh | 300 | 4 |
Multipleback | 25% Silica sol, wetting agent, anti-foam agent | EC95, 16–60 mesh | 500 | 4 |
Sealcoat | 25% Silica sol, wetting agent, anti-foam agent | None | 500 | 5 |
Atom | O/% | Al/% | La/% |
---|---|---|---|
1 | 69.07 | 1.51 | 39.42 |
2 | 57.51 | 19.99 | 22.5 |
3 | 55.40 | 23.58 | 21.02 |
4 | 56.46 | 21.04 | 22.49 |
Atom | O/% | Al/% | La/% | Si/% |
---|---|---|---|---|
1 | 59.54 | 37.23 | 3.03 | 0.19 |
2 | 62.74 | 2.30 | 16.71 | 18.25 |
3 | 60.05 | 36.9 | 2.85 | 0.2 |
4 | 53.80 | 22.23 | 22.72 | 1.24 |
5 | 52.44 | 41.57 | 5.29 | 0.7 |
Atom | O/% | Al/% | La/% | Si/% |
---|---|---|---|---|
1 | 67.85 | - | 16.46 | 15.69 |
2 | 59.53 | 18.08 | 22.39 | - |
3 | 73.29 | - | 13.05 | 13.66 |
4 | 64.40 | 33.16 | 2.44 | - |
Atom | O/% | Al/% | La/% | Si/% |
---|---|---|---|---|
1 | 64.84 | 16.70 | 18.46 | - |
2 | 65.53 | - | 20.39 | 14.08 |
3 | 70.20 | 15.08 | 14.72 | |
4 | 38.66 | 61.34 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yu, J.; Li, X.; Yang, Z.; Ren, Z.; Zhang, X. Improved Properties of Ceramic Shells by Optimizing the Surface Composition from Lanthanide-Based Composites. Coatings 2025, 15, 746. https://doi.org/10.3390/coatings15070746
Li M, Yu J, Li X, Yang Z, Ren Z, Zhang X. Improved Properties of Ceramic Shells by Optimizing the Surface Composition from Lanthanide-Based Composites. Coatings. 2025; 15(7):746. https://doi.org/10.3390/coatings15070746
Chicago/Turabian StyleLi, Minghui, Jianbo Yu, Xia Li, Zhigang Yang, Zhongming Ren, and Xiaoxin Zhang. 2025. "Improved Properties of Ceramic Shells by Optimizing the Surface Composition from Lanthanide-Based Composites" Coatings 15, no. 7: 746. https://doi.org/10.3390/coatings15070746
APA StyleLi, M., Yu, J., Li, X., Yang, Z., Ren, Z., & Zhang, X. (2025). Improved Properties of Ceramic Shells by Optimizing the Surface Composition from Lanthanide-Based Composites. Coatings, 15(7), 746. https://doi.org/10.3390/coatings15070746