Effect of Fe2O3@SiO2 Core–Shell Nanoparticle Doping Ratio on Color Appearance of Synthetic Opal Films Inspired by Natural Fire Opal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Process of Samples
2.2.1. Synthesis of Fe2O3@SiO2 NPs
2.2.2. Synthesis of SiO2 NPs
2.2.3. Fabrication of Opal Films
2.3. Characterization Method
2.4. Numerical Simulation
3. Results and Discussion
3.1. Characterization of Nanoparticles for Opal Film Fabrication
3.2. Characterization of Opal Films
3.3. Color Effects of Fe2O3@SiO2 NP Doping Ratio
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armstrong, E.; O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures—Fundamentals and applications from optics to energy storage. J. Mater. Chem. C 2015, 3, 6109–6143. [Google Scholar] [CrossRef]
- Wu, Y.T.; Liu, Q.J.; Li, M.L.; Zhang, X.M.; Hei, X.P. Bright Structural Color and High Hydrophobic Properties of Photonic Crystal Films on the Ceramic Glaze Layer via Vertical Deposition Self-Assembly Method. Chemistryselect 2021, 6, 10986–10990. [Google Scholar] [CrossRef]
- Ono, Y. Application of silica opals to ceramic pottery. J. Asian Ceram. Soc. 2020, 8, 578–585. [Google Scholar] [CrossRef]
- Liu, Y. Self-assembly of poly(styrene-methyl methacrylate-acrylic acid) (P(St-MMA-AA)) colloidal microspheres on wood surface by thermal-assisted gravity deposition. Wood Sci. Technol. 2021, 55, 403–417. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Wu, Z. Fabrication of Coatings with Structural Color on a Wood Surface. Coatings 2020, 10, 32. [Google Scholar] [CrossRef]
- Siegwardt, L.; Gallei, M. Complex 3D-Printed Mechanochromic Materials with Iridescent Structural Colors Based on Core–Shell Particles. Adv. Funct. Mater. 2023, 33, 2213099. [Google Scholar] [CrossRef]
- Zhao, C.F.; Wang, J.; Zhang, Z.Q.; Chi, C.C. Research Progress on the Design of Structural Color Materials Based on 3D Printing. Adv. Mater. Technol. 2022, 8, 2200257. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Shi, Z.; Tan, D.; Yang, X.; Xiong, L.; Li, G.; Lei, Y.; Xue, L. Fast Self-Assembly of Photonic Crystal Hydrogel for Wearable Strain and Temperature Sensor. Small Methods 2022, 6, 2200461. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, M.; Zhang, H.R.; Meng, Z.H.; Shea, K.J.; Qiu, L.L.; Ji, T.T.; Xie, T.S. Self-assembly of a nano hydrogel colloidal array for the sensing of humidity. RSC Adv. 2018, 8, 9963–9969. [Google Scholar] [CrossRef]
- Lee, H.S.; Shim, T.S.; Hwang, H.; Yang, S.M.; Kim, S.H. Colloidal Photonic Crystals toward Structural Color Palettes for Security Materials. Chem. Mater. 2013, 25, 2684–2690. [Google Scholar] [CrossRef]
- Liu, H.L.; Xie, D.; Shen, H.Y.; Li, F.Y.; Chen, J.J. Functional Micro-Nano Structure with Variable Colour: Applications for Anti-Counterfeiting. Adv. Polym. Technol. 2019, 2019, 6519018. [Google Scholar] [CrossRef]
- Tran, V.T.; Kim, J.; Oh, S.; Jeong, K.J.; Lee, J. Rapid Assembly of Magnetoplasmonic Photonic Arrays for Brilliant, Noniridescent, and Stimuli-Responsive Structural Colors. Small 2022, 18, 2200317. [Google Scholar] [CrossRef]
- Sai, T.; Froufe-Perez, L.S.; Scheffold, F.; Wilts, B.D.; Dufresne, E.R. Structural color from pigment-loaded nanostructures. Soft Matter 2023, 19, 7717–7723. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.H.; Kang, H.; Kim, S.H. Colloidal Assembly in Leidenfrost Drops for Noniridescent Structural Color Pigments. Langmuir 2014, 30, 8350–8356. [Google Scholar] [CrossRef]
- Zhu, X.W.; Li, Y.J.; Wei, T.C.; Li, Y.C.; Xing, T.L.; Shawkey, M.D.; Chen, G.Q. TA-Fe(iii) complex coated PS nanospheres for non-iridescent structural coloration of cotton fabric. J. Mater. Chem. C 2022, 10, 17472–17480. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Lin, Y.; Wang, L.; Zhu, J.F. Structural Coloration Pigments based on Carbon Modified ZnS@SiO2 Nanospheres with Low-Angle Dependence, High Color Saturation, and Enhanced Stability. ACS Appl. Mater. Interfaces 2016, 8, 5009–5016. [Google Scholar] [CrossRef]
- Takeoka, Y.; Yoshioka, S.; Takano, A.; Arai, S.; Nueangnoraj, K.; Nishihara, H.; Teshima, M.; Ohtsuka, Y.; Seki, T. Production of colored pigments with amorphous arrays of black and white colloidal particles. Angew. Chem. Int. Ed. Engl. 2013, 52, 7261–7265. [Google Scholar] [CrossRef] [PubMed]
- Forster, J.D.; Noh, H.; Liew, S.F.; Saranathan, V.; Schreck, C.F.; Yang, L.; Park, J.G.; Prum, R.O.; Mochrie, S.G.; O’Hern, C.S.; et al. Biomimetic isotropic nanostructures for structural coloration. Adv. Mater. 2010, 22, 2939–2944. [Google Scholar] [CrossRef]
- Teshima, M.; Seki, T.; Kawano, R.; Takeuchi, S.; Yoshioka, S.; Takeoka, Y. Preparation of structurally colored, monodisperse spherical assemblies composed of black and white colloidal particles using a micro-flow-focusing device. J. Mater. Chem. C 2015, 3, 769–777. [Google Scholar] [CrossRef]
- Lee, K.Y.; Chun, J.; Lee, J.H.; Kim, K.N.; Kang, N.R.; Kim, J.Y.; Kim, M.H.; Shin, K.S.; Gupta, M.K.; Baik, J.M.; et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042. [Google Scholar] [CrossRef]
- Vogel, N.; Utech, S.; England, G.T.; Shirman, T.; Phillips, K.R.; Koay, N.; Burgess, I.B.; Kolle, M.; Weitz, D.A.; Aizenberg, J. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies. Proc. Natl. Acad. Sci. USA 2015, 112, 10845–10850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhu, J.F.; Shi, P.; Wang, F.; Wang, J.H.; Ren, Z. Achieving tunable sky-blue copper glaze and coloring mechanism by the introduction of phosphorus. J. Eur. Ceram. Soc. 2019, 39, 1925–1931. [Google Scholar] [CrossRef]
- Lee, C.H.; Yu, J.; Wang, Y.; Tang, A.Y.L.; Kan, C.W.; Xin, J.H. Effect of graphene oxide inclusion on the optical reflection of a silica photonic crystal film. RSC Adv. 2018, 8, 16593–16602. [Google Scholar] [CrossRef]
- Emerson, D. Opal: The Queen of Gems. Preview 2016, 2016, 37–45. [Google Scholar] [CrossRef]
- Fritsch, E.; Gaillou, E.; Rondeau, B.; Barreau, A.; Albertini, D.; Ostroumov, M. The nanostructure of fire opal. J. Non-Cryst. Solids 2006, 352, 3957–3960. [Google Scholar] [CrossRef]
- Simoni, M.; Caucia, F.; Adamo, I.; Galinetto, P. New Occurrence of Fire Opal from Bemia, Madagascar. Gems Gemol. 2010, 46, 114–121. [Google Scholar] [CrossRef]
- Wu, J.; Ma, H.; Ma, Y.; Ning, P.; Tang, N.; Li, H. Comparison of Natural and Dyed Fire Opal. Crystals 2022, 12, 322. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Y. Characterizations of absorption, scattering, and transmission of typical nanoparticles and their suspensions. J. Ind. Eng. Chem. 2020, 82, 324–332. [Google Scholar] [CrossRef]
- Pursiainen, O.L.J.; Baumberg, J.J.; Winkler, H.; Viel, B.; Spahn, P.; Ruhl, T. Nanoparticle-tuned structural color from polymer opals. Opt. Express 2007, 15, 9553–9561. [Google Scholar] [CrossRef]
- Grudinkin, S.A.; Kaplan, S.F.; Kartenko, N.F.; Kurdyukov, D.A.; Golubev, V.G. Opal-Hematite and Opal-Magnetite Films: Lateral Infiltration, Thermodynamically Driven Synthesis, Photonic Crystal Properties. J. Mater. Chem. C 2008, 112, 17855–17861. [Google Scholar] [CrossRef]
- Lange, B.; Fleischhaker, F.; Zentel, R. Chemical approach to functional artificial opals. Macromol. Rapid Commun. 2007, 28, 1291–1311. [Google Scholar] [CrossRef]
- Manoharan, V.N. Colloidal matter: Packing, geometry, and entropy. Science 2015, 349, 1253751. [Google Scholar] [CrossRef] [PubMed]
- Vogel, N.; Retsch, M.; Fustin, C.A.; del Campo, A.; Jonas, U. Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chem. Rev. 2015, 115, 6265–6311. [Google Scholar] [CrossRef]
- Wu, M.F.; Zhang, C.Y.; Wei, F.J.; An, H.F.; Wang, X.Q.; Li, D.; Wang, H.Y.; Wen, K.X.; Lin, Q.Y.; Duan, Y.X. A self-assembly based on a hydrogel interface: Facile, rapid, and large-scale preparation of colloidal photonic crystals. Mater. Chem. Front. 2020, 4, 2409–2417. [Google Scholar] [CrossRef]
- Marlow, F.; Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C. Opals: Status and Prospects. Angew. Chem. Int. Ed. 2009, 48, 6212–6233. [Google Scholar] [CrossRef]
- Diaz-Marin, C.D.; Shetty, R.M.; Cheung, S.; Vaartstra, G.; Gopinath, A.; Wang, E.E. Rational Fabrication of Nano-to-Microsphere Polycrystalline Opals Using Slope Self-Assembly. Langmuir 2021, 37, 12568–12576. [Google Scholar] [CrossRef] [PubMed]
- Castaneda-Uribe, O.A.; Mendez-Pinzon, H.A.; Salcedo-Reyes, J.C. Controlling the quality of SiO2 colloidal crystals by temperature ramping on the vertical convective self-assembly method. Opt. Mater. Express 2021, 11, 2686–2699. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Quan, M.H.; Zhao, W.D.; Yang, Z.; Wang, D.; Cao, H.; He, W.L. Preferential self-assembly behavior of polydisperse silica particles under negative pressure. Colloids Surf. A 2017, 529, 832–839. [Google Scholar] [CrossRef]
- Jose, S.; Joshy, D.; Narendranath, S.B.; Periyat, P. Recent advances in infrared reflective inorganic pigments. Sol. Energy Mater. Sol. Cells 2019, 194, 7–27. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, M.; Lang, Y.; Tian, C.; Wei, H.; Wang, C.A. Preparation and characterization of monodispersed spherical Fe2O3@SiO2 reddish pigments with core-shell structure. J. Adv. Ceram. 2019, 8, 39–46. [Google Scholar] [CrossRef]
- Shiomi, S.; Kawamori, M.; Yagi, S.; Matsubara, E. One-pot synthesis of silica-coated copper nanoparticles with high chemical and thermal stability. J. Colloid Interface Sci. 2015, 460, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Shahabadi, N.; Falsafi, M.; Feizi, F.; Khodarahmi, R. Functionalization of gamma-Fe2O3@SiO2 nanoparticles using the antiviral drug zidovudine: Synthesis, characterization, in vitro cytotoxicity and DNA interaction studies. RSC Adv. 2016, 6, 73605–73616. [Google Scholar] [CrossRef]
- Zhang, Y.; Rao, P.; Lu, M.; Zeng, D.Z.; Wu, J.Q. Synthesis and Color Evolution of Silica-Coated Hematite Nanoparticles. J. Am. Ceram. Soc. 2009, 92, 1877–1880. [Google Scholar] [CrossRef]
- Obaidullah, M.; Bahadur, N.M.; Furusawa, T.; Sato, M.; Sakuma, H.; Suzuki, N. Microwave assisted rapid synthesis of Fe2O3@SiO2 core-shell nanocomposite for the persistence of magnetic property at high temperature. Colloids Surf. A 2019, 572, 138–146. [Google Scholar] [CrossRef]
- Faustini, M.; Grosso, D.; Boissière, C.; Backov, R.; Sanchez, C. “Integrative sol–gel chemistry”: A nanofoundry for materials science. J. Sol-Gel Sci. Technol. 2014, 70, 216–226. [Google Scholar] [CrossRef]
- Silva, A.S.; Santos, J.H.Z. Stober method and its nuances over the years. Adv. Colloid Interface Sci. 2023, 314, 102888. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, B.; Chen, A.; Liu, X.; Shi, L.; Zi, J. Using Cuttlefish Ink as an Additive to Produce Non-Iridescent Structural Colors of High Color Visibility. Adv. Mater. 2015, 27, 4719–4724. [Google Scholar] [CrossRef]
- Ge, D.; Yang, L.; Wu, G.; Yang, S. Spray Coating of Superhydrophobic and Angle-Independent Coloured Films. Chem. Commun. 2014, 50, 2469–2472. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Structurally Colored Carbon Fibers with Controlled Optical Properties Prepared by a Fast and Continuous Electrophoretic Deposition Method. Nanoscale 2013, 5, 6917–6922. [Google Scholar] [CrossRef]
- Fang, Y.; Phillips, B.M.; Askar, K.; Choi, B.; Jiang, P.; Jiang, B. Scalable bottom-up fabrication of colloidal photonic crystals and periodic plasmonic nanostructures. J. Mater. Chem. C 2013, 1, 6031–6047. [Google Scholar] [CrossRef]
- Park, J.G.; Kim, S.H.; Magkiriadou, S.; Choi, T.M.; Kim, Y.S.; Manoharan, V.N. Full-Spectrum Photonic Pigments with Non-Iridescent Structural Colors through Colloidal Assembly. Angew. Chem. Int. Ed. 2014, 53, 2899–2903. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Tuersun, P.; Cheng, L.; Zheng, Y.; Abulaiti, R. PyMieLab_V1.0: A software for calculating the light scattering and absorption of spherical particles. Heliyon 2022, 8, 11469. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Lemarchand, F.; Lequime, M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: Spectrophotometric reverse engineering on single and bi-layer designs. J. Eur. Opt. Soc.-Rapid 2013, 8, 13010. [Google Scholar] [CrossRef]
- Querry, M.R. Optical Constants, Contractor Report CRDC-CD-85034; U.S. Army: Aberdeen Proving Ground, Maryland, 1985. [Google Scholar]
- Metin, C.O.; Lake, L.W.; Miranda, C.R.; Nguyen, Q.P. Stability of aqueous silica nanoparticle dispersions. J. Nanopart. Res. 2010, 13, 839–850. [Google Scholar] [CrossRef]
- Demirörs, A.F.; Manne, K.; Magkiriadou, S.; Scheffold, F. Tuning disorder in structurally colored bioinspired photonic glasses. Soft Matter 2024, 20, 1620–1628. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour difference ∆E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Vos, W.L.; Sprik, R.; van Blaaderen, A.; Imhof, A.; Lagendijk, A.; Wegdam, G.H. Strong effects of photonic band structures on the diffraction of colloidal crystals. Phys. Rev. B 1996, 53, 16231–16235. [Google Scholar] [CrossRef]
- Aguirre, C.I.; Reguera, E.; Stein, A. Tunable Colors in Opals and Inverse Opal Photonic Crystals. Adv. Funct. Mater. 2010, 20, 2565–2578. [Google Scholar] [CrossRef]
- Averitt, R.D.; Westcott, S.L.; Halas, N.J. Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B 1999, 16, 1824–1832. [Google Scholar] [CrossRef]
- Cakmak, A.O.; Colak, E.; Serebryannikov, A.E. Using Thin Films of Phase-Change Material for Active Tuning of Terahertz Waves Scattering on Dielectric Cylinders. Materials 2024, 17, 260. [Google Scholar] [CrossRef]
- Christensen, T.; Jauho, A.P.; Wubs, M.; Mortensen, N.A. Localized plasmons in graphene-coated nanospheres. Phys. Rev. B 2015, 91, 125414. [Google Scholar] [CrossRef]
- Goncharenko, A.V.; Venger, E.F.; Chang, Y.C.; Pinchuk, A.O. Arrays of core-shell nanospheres as 3d isotropic broadband ENZ and highly absorbing metamaterials. Opt. Mater. Express 2014, 4, 2310–2322. [Google Scholar] [CrossRef]
- Shi, P.; Wang, F.; Zhu, J.F.; Yang, H.B.; Wang, Y.; Fang, Y.; Zhang, B.; Wang, J.H. Amorphous photonic crystals and structural colors in the phase separation glaze. J. Eur. Ceram. Soc. 2018, 38, 2228–2233. [Google Scholar] [CrossRef]
Close-Packing Plane (hkl) | 1st-Order Diffraction Peak Range (nm) | Main 1st-Order Diffraction Peak Position (nm) | 2nd-Order Diffraction Peak Range (nm) | Main 2nd-Order Diffraction Peak Position (nm) |
---|---|---|---|---|
FCC (111) | 588.9~712.9 | 650.9 | 294.4~356.4 | 325.4 |
FCC (100) | 1020.0~1234.7 | 1127.4 | 509.9~617.4 | 563.7 |
FCC (110) | 721.2~873.1 | 797.2 | 360.6~436.5 | 398.6 |
HCP (001) | 1177.8~1452.7 | 1301.8 | 588.9~712.9 | 650.9 |
HCP (100) | 624.6~756.1 | 690.4 | 312.3~378.1 | 345.2 |
HCP (101) | 551.8~668.0 | 609.9 | 275.9~334.0 | 305.0 |
HCP (110) | 360.6~436.5 | 398.6 | 180.3~218.3 | 199.3 |
HCP (111) | 344.8~417.4 | 381.1 | 172.4~208.7 | 190.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Shen, A.H. Effect of Fe2O3@SiO2 Core–Shell Nanoparticle Doping Ratio on Color Appearance of Synthetic Opal Films Inspired by Natural Fire Opal. Coatings 2025, 15, 646. https://doi.org/10.3390/coatings15060646
Li B, Shen AH. Effect of Fe2O3@SiO2 Core–Shell Nanoparticle Doping Ratio on Color Appearance of Synthetic Opal Films Inspired by Natural Fire Opal. Coatings. 2025; 15(6):646. https://doi.org/10.3390/coatings15060646
Chicago/Turabian StyleLi, Bowen, and Andy Hsitien Shen. 2025. "Effect of Fe2O3@SiO2 Core–Shell Nanoparticle Doping Ratio on Color Appearance of Synthetic Opal Films Inspired by Natural Fire Opal" Coatings 15, no. 6: 646. https://doi.org/10.3390/coatings15060646
APA StyleLi, B., & Shen, A. H. (2025). Effect of Fe2O3@SiO2 Core–Shell Nanoparticle Doping Ratio on Color Appearance of Synthetic Opal Films Inspired by Natural Fire Opal. Coatings, 15(6), 646. https://doi.org/10.3390/coatings15060646