Comparison of Color Metallography and Electron Microscopy in Characterizing the Microstructure of H59 Brass Alloy
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results
3.1. Phase Composition
3.2. Comparative Analysis of Microstructure Characterization
3.3. Phase Content Analysis
3.4. Grain Orientation Analysis
4. Discussion
5. Conclusions
- (1).
- By aqua regia etching on H59 brass, visible color metallography could be achieved, which was low-cost, fast, and efficient compared with traditional metallography and advanced electron microscopy technology.
- (2).
- Color metallographic images could be used to characterize the phase morphology and distribution of brass alloys and could also be used for phase identification.
- (3).
- The average error in the α phase using color metallographic statistics was 5.25%, the average error in the β phase was 4.71%, and the average error rate in the phase content was 4.98% (less than 5%).
- (4).
- The grain orientation of the β phase in the color metallography of H59 brass is related to the degree of brightness and darkness: the color of the low-index surface is brighter, and the color of the high-index surface is darker.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahdi, M.M.; Ali, A.M.; Alalousi, M.A.; Kadhim, D.A.; Abid, M.A. Developing a Copper-Zinc-Aluminum Alloying Technique by Vacuum Thermal Deposition after Irradiation by Gamma Rays (NaI (Ti)) with Stabilized Zinc Metal. Vacuum 2024, 219, 112676. [Google Scholar] [CrossRef]
- Yu, X.; Xiao, Z.; Li, Z.; Zhao, X.; Lu, S.; Fu, Y. Hot Deformation Behaviour and Microstructure Evolution of Gold-Imitation Brass Alloy with High Corrosion Resistance. Trans. Nonferrous Met. Soc. China 2023, 33, 839–850. [Google Scholar] [CrossRef]
- Akbar, F.; Čurlík, I.; Reiffers, M.; Giovannini, M. Phase Equilibria and Crystal Structures in the Ytterbium–Copper–Zinc System. J. Alloy. Compd. 2024, 976, 173195. [Google Scholar] [CrossRef]
- Al-Jubury, A.; Yin, F.; Abusharkh, T.; Fuad, M.H.; Kania, P.W.; Buchmann, K. Stationary Metal Sheets (Copper, Zinc or Brass) in Fish Tanks Prevent Ichthyophthirius Multifiliis Fouquet, 1876 Infection of Rainbow Trout: In Vivo and in Vitro Effects. Aquaculture 2023, 577, 739945. [Google Scholar] [CrossRef]
- Mendonça, R.R.; Nogueira, I.M.S.; Lovo, J.F.P.; Canale, L.C.F. Multiple Etchings Methodology: A New Approach in Multiphase Steel Characterization. J. Microsc. 2020, 277, 93–99. [Google Scholar] [CrossRef]
- Lambert, A.; Lambert, A.; Drillet, J.; Gourgues, A.F.; Sturel, T.; Pineau, A. Microstructure of Martensite–Austenite Constituents in Heat Affected Zones of High Strength Low Alloy Steel Welds in Relation to Toughness Properties. Sci. Technol. Weld. Join. 2000, 5, 168–173. [Google Scholar] [CrossRef]
- Shan, X.; Peng, B.; Li, G.; Dong, B.; Wang, X.; Liu, S.; Jie, J.; Li, T. CALPHAD-Aided Designing Complex Brass Alloys and Revealing the Evolution Mechanism of δ-Ni2Si Reinforcing Phase. Mater. Sci. Eng. A 2025, 923, 147759. [Google Scholar] [CrossRef]
- Xu, X.; Song, Z.; Wang, K.; Li, H.; Pan, Y.; Hou, H.; Zhao, Y. Cryo-Rolling and Annealing-Mediated Phase Transformation in Al5Ti2.5Fe25Cr25Ni42.5 High-Entropy Alloy: Experimental, Phase-Field and CALPHAD Investigation. J. Mater. Sci. Technol. 2025, 219, 307–325. [Google Scholar] [CrossRef]
- Pu, Q.; Geng, J.; Li, K.; Luo, T.; Li, Y.; Xia, P.; Wang, F.; Chen, D.; Wang, H.; Wang, H. Microstructural Insights into Short Fatigue Crack Growth in Particle-Reinforced al-Matrix Composite Sheet. Int. J. Fatigue 2025, 193, 108787. [Google Scholar] [CrossRef]
- Bajaj, D.; Feng, A.H.; Qu, S.J.; Li, D.Y.; Chen, D.L. Orientation-Dependent Lattice Rotation and Phase Transformation in an Additively Manufactured High-Entropy Alloy. J. Mater. Sci. Technol. 2025, 227, 11–25. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Chen, X.; Liu, Z.; Ren, X.; Zhu, M. Orientation-Related Fatigue Crack Initiation Behavior at Twin Boundary of Inconel 718 in Vacuum Environment of 650 °C. Int. J. Fatigue 2025, 193, 108825. [Google Scholar] [CrossRef]
- Liu, Y.T.; Chua, C.; Soh, V.; Sun, Z.; Chua, C.K.; Sing, S.L. Revealing the Underlying Mechanism in Controlling Young’s Modulus of Additively Manufactured Ti-6Al-4V Using Fuzzified Machine Learning. Virtual Phys. Prototyp. 2025, 20, e2443103. [Google Scholar] [CrossRef]
- Huo, K.; Han, P.; Wang, W.; Liu, Y.; Zhang, X.; Zheng, P.; Qiao, K.; Qiang, F.; Wang, Q.; Wang, K. Role of Intermetallic Compounds in the Fracture of Double-Sided Friction Stir Welded Titanium-Steel Clad Plates. Mater. Charact. 2025, 221, 114757. [Google Scholar] [CrossRef]
- Xiang, Z.; Chen, M.; Wang, L.; Wang, M.; Li, L. The Process, Microstructure, and Mechanical Properties of Hybrid Manufacturing for Steel Injection Mold Components. CIRP J. Manuf. Sci. Technol. 2025, 57, 90–99. [Google Scholar] [CrossRef]
- Renkó, J.B.; Bonyár, A.; Jánoš Szabó, P. Effect of Beracha-I Type Color Etchant on the Ferrite Phase in Different Type Fe-C Alloys. IOP Conf. Ser. Mater. Sci. Eng. 2020, 903, 012054. [Google Scholar] [CrossRef]
- González Fernández De Castro, M.; Martín Álvarez, Y.; Moreno-Labella, J.J.; Panizo-Laiz, M.; Del Río, B. Color-Metallographic Characterization of Alloyed White Cast Irons Ni-Hard Type. Metals 2020, 10, 728. [Google Scholar] [CrossRef]
- Suárez-Peña, B.; Asensio-Lozano, J.; Vander-Voort, G.F. Metalografía a color en aleaciones Al-Si comerciales. Optimización de las técnicas de caracterización microestructural mediante microscopía óptica de reflexión. Rev. Met. 2010, 46, 469–476. [Google Scholar] [CrossRef]
- Ambrož, O.; Čermák, J.; Jozefovič, P.; Mikmeková, Š. Automated color etching of aluminum alloys. Pract. Met. 2022, 59, 459–474. [Google Scholar] [CrossRef]
- Duwe, S.; Tonn, B. The effect of seven etching solutions used for the differentiated visualization of complex microstructures in low-alloyed cast iron. Pract. Met. 2021, 58, 507–538. [Google Scholar] [CrossRef]
- Pashangeh, S.; Ghasemi Banadkouki, S.S.; Besharati, F.; Mehrabi, F.; Somani, M.; Kömi, J. Color Light Metallography Versus Electron Microscopy for Detecting and Estimating Various Phases in a High-Strength Multiphase Steel. Metals 2021, 11, 855. [Google Scholar] [CrossRef]
- Vaško, A.; Belan, J.; Tillová, E. Use of Colour Etching in the Structural Analysis of Graphitic Cast Irons. Manuf. Technol. 2020, 20, 845–848. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Song, R.; Harada, Y.; Kumai, S. Color Metallography of Characteristic Microstructure in High-Speed Twin-Roll Cast Al–Mn–Si Alloy Strip Using Weck’s Reagent. Mater. Trans. 2020, 61, 2253–2262. [Google Scholar] [CrossRef]
- Bonyár, A.; Renkó, J.; Kovács, D.; Szabó, P.J. Understanding the Mechanism of Beraha-I Type Color Etching: Determination of the Orientation Dependent Etch Rate, Layer Refractive Index and a Method for Quantifying the Angle between Surface Normal and the <100>, <111> Directions for Individual Grains. Mater. Charact. 2019, 156, 109844. [Google Scholar] [CrossRef]
- Renkó, J.B.; Szabó, P.J.; Bonyár, A. Correlation between the Developed Layer’s Color and Crystallographic Orientation of Pure Copper during Long-Term Color Etching with beraha-I. J. Mater. Res. Technol. 2023, 23, 4346–4354. [Google Scholar] [CrossRef]
- Bonyár, A.; Szabó, P.J. Correlation between the Grain Orientation Dependence of Color Etching and Chemical Etching. Microsc. Microanal. 2012, 18, 1389–1392. [Google Scholar] [CrossRef]
- Renkó, J.B.; Romanenko, A.; Szabó, P.J.; Sulyok, A.; Petrik, P.; Bonyár, A. Analysis of Structural and Chemical Inhomogeneity of Thin Films Developed on Ferrite Grains by Color Etching with Beraha-I Type Etchant with Spectroscopic Ellipsometry and XPS. J. Mater. Res. Technol. 2022, 18, 2822–2830. [Google Scholar] [CrossRef]
Elements | Cu | Zn | Pb | p | Fe | Sb | Bi | Impurities |
---|---|---|---|---|---|---|---|---|
Composition (wt.%) | 57–60 | Bal | ≤0.5 | ≤0.01 | ≤0.3 | ≤0.01 | ≤0.003 | ≤1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Ma, Y.; Yang, H.; Ma, Z.; Chen, L. Comparison of Color Metallography and Electron Microscopy in Characterizing the Microstructure of H59 Brass Alloy. Coatings 2025, 15, 531. https://doi.org/10.3390/coatings15050531
Yuan S, Ma Y, Yang H, Ma Z, Chen L. Comparison of Color Metallography and Electron Microscopy in Characterizing the Microstructure of H59 Brass Alloy. Coatings. 2025; 15(5):531. https://doi.org/10.3390/coatings15050531
Chicago/Turabian StyleYuan, Shidan, Ye Ma, Hui Yang, Zhen Ma, and Lei Chen. 2025. "Comparison of Color Metallography and Electron Microscopy in Characterizing the Microstructure of H59 Brass Alloy" Coatings 15, no. 5: 531. https://doi.org/10.3390/coatings15050531
APA StyleYuan, S., Ma, Y., Yang, H., Ma, Z., & Chen, L. (2025). Comparison of Color Metallography and Electron Microscopy in Characterizing the Microstructure of H59 Brass Alloy. Coatings, 15(5), 531. https://doi.org/10.3390/coatings15050531