Antimicrobial Activity of Lignin-Based Alkyd Coatings Containing Soft Hop Resins and Thymol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Strains
2.2. Paint Formulation
2.3. Application and Physical Characterisation of Paints
2.4. Antimicrobial Tests
2.5. Antiviral Bioassay
3. Results and Discussion
3.1. Paints’ Physical Characterisation
3.2. Antimicrobial Activity of the Paints
3.3. Antiviral Activity of the Paints
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gest, H. The Discovery of Microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society. Notes Rec. R. Soc. Lond. 2004, 58, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Piret, J.; Boivin, G. Pandemics Throughout History. Front. Microbiol. 2021, 11, 631736. [Google Scholar] [CrossRef]
- Cassidy, S.S.; Sanders, D.J.; Wade, J.; Parkin, I.P.; Carmalt, C.J.; Smith, A.M.; Allan, E. Antimicrobial Surfaces: A Need for Stewardship? PLoS Pathog. 2020, 16, e1008880. [Google Scholar] [CrossRef]
- Marquès, M.; Domingo, J.L. Contamination of Inert Surfaces by SARS-CoV-2: Persistence, Stability and Infectivity. A Review. Environ. Res. 2021, 193, 110559. [Google Scholar] [CrossRef] [PubMed]
- Brief, W.S. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Correa, J.d.S.; Primo, J.d.O.; Balaba, N.; Pratsch, C.; Werner, S.; Toma, H.E.; Anaissi, F.J.; Wattiez, R.; Zanette, C.M.; Onderwater, R.C.A.; et al. Copper(II) and Cobalt(II) Complexes Based on Abietate Ligands from Pinus Resin: Synthesis, Characterization and Their Antibacterial and Antiviral Activity against SARS-CoV-2. Nanomaterials 2023, 13, 1202. [Google Scholar] [CrossRef]
- Susan Muthoni, M. Hospitals Surfaces and Sites as a Reservoir for Pathogenic Bacteria That Play a Role in Transmission of Infectious Diseases. J. Health Environ. Res. 2021, 7, 139. [Google Scholar] [CrossRef]
- Ngonda, F. Assessment of Bacterial Contamination of Toilets and Bathroom Doors Handle/Knobs at Daeyang Luke Hospital. Pharm. Biol. Eval. 2017, 4, 193. [Google Scholar] [CrossRef]
- Saka, K.; Akanbi II, A.; Obasa, T.; Raheem, R.; Oshodi, A. Bacterial Contamination of Hospital Surfaces According to Material Make, Last Time of Contact and Last Time of Cleaning/Disinfection. J. Bacteriol. Parasitol. 2017, 8, 8–11. [Google Scholar] [CrossRef]
- Odigie, A.B.; Ekhiase, F.O.; Orjiakor, P.I.; Omozuwa, S. The Role of Door Handles in the Spread of Microorganisms of Public Health Consequences in University of Benin Teaching Hospital (UBTH), Benin City, Edo State. Pharm. Sci. Technol. 2017, 2, 15–21. [Google Scholar]
- Weber, D.J.; Rutala, W.A.; Miller, M.B.; Huslage, K.; Sickbert-Bennett, E. Role of Hospital Surfaces in the Transmission of Emerging Health Care-Associated Pathogens: Norovirus, Clostridium Difficile, and Acinetobacter Species. Am. J. Infect. Control 2010, 38, S25–S33. [Google Scholar] [CrossRef]
- Otter, J.A.; Yezli, S.; Salkeld, J.A.G.; French, G.L. Evidence That Contaminated Surfaces Contribute to the Transmission of Hospital Pathogens and an Overview of Strategies to Address Contaminated Surfaces in Hospital Settings. Am. J. Infect. Control 2013, 41, S6–S11. [Google Scholar] [CrossRef] [PubMed]
- Carling, P.C.; Parry, M.F.; Bruno-Murtha, L.A.; Dick, B. Improving Environmental Hygiene in 27 Intensive Care Units to Decrease Multidrug-Resistant Bacterial Transmission. Crit. Care Med. 2010, 38, 1054–1059. [Google Scholar] [CrossRef]
- Deng, Y.; Song, G.-L.; Zheng, D.; Zhang, Y. Fabrication and Synergistic Antibacterial and Antifouling Effect of an Organic/Inorganic Hybrid Coating Embedded with Nanocomposite Ag@TA-SiO Particles. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126085. [Google Scholar] [CrossRef]
- Klein, S.E.; Alzagameem, A.; Rumpf, J.; Korte, I.; Kreyenschmidt, J.; Schulze, M. Antimicrobial Activity of Lignin-Derived Polyurethane Coatings Prepared from Unmodified and Demethylated Lignins. Coatings 2019, 9, 494. [Google Scholar] [CrossRef]
- Damodaran, V.B.; Murthy, N.S. Bio-Inspired Strategies for Designing Antifouling Biomaterials. Biomater. Res. 2016, 20, 18. [Google Scholar] [CrossRef]
- Mas-Moruno, C.; Su, B.; Dalby, M.J. Multifunctional Coatings and Nanotopographies: Toward Cell Instructive and Antibacterial Implants. Adv. Healthc. Mater. 2019, 8, e1801103. [Google Scholar] [CrossRef]
- de Haro, J.C.; Allegretti, C.; Smit, A.T.; Turri, S.; D’Arrigo, P.; Griffini, G. Biobased Polyurethane Coatings with High Biomass Content: Tailored Properties by Lignin Selection. ACS Sustain. Chem. Eng. 2019, 7, 11700–11711. [Google Scholar] [CrossRef]
- Alam, M.; Akram, D.; Sharmin, E.; Zafar, F.; Ahmad, S. Vegetable Oil Based Eco-Friendly Coating Materials: A Review Article. Arab. J. Chem. 2014, 7, 469–479. [Google Scholar] [CrossRef]
- Dastpak, A.; Yliniemi, K.; De Oliveira Monteiro, M.C.; Höhn, S.; Virtanen, S.; Lundström, M.; Wilson, B.P. From Waste to Valuable Resource: Lignin as a Sustainable Anti-Corrosion Coating. Coatings 2018, 8, 454. [Google Scholar] [CrossRef]
- Dizman, C.; Kaçakgil, E.C. Alkyd Resins Produced from Bio-Based Resources for More Sustainable and Environmentally Friendly Coating Applications. Turk. J. Chem. 2023, 47, 1. [Google Scholar] [CrossRef]
- Chardon, F.; Denis, M.; Negrell, C.; Caillol, S. Hybrid Alkyds, the Glowing Route to Reach Cutting-Edge Properties? Prog. Org. Coat. 2021, 151, 106025. [Google Scholar] [CrossRef]
- Abd El-Wahab, H.; El-Eisawy, R.A. Preparation of New Modified Antimicrobial Alkyd Resin Based on Benzo [b] Thiophene Derivative as Source of Polyol for Surface Coating Applications. Pigment. Resin. Technol. 2023, 52, 661–670. [Google Scholar] [CrossRef]
- Kızılkonca, E.; Erim, F.B. Development of Anti-Aging and Anticorrosive Nanoceria Dispersed Alkyd Coating for Decorative and Industrial Purposes. Coatings 2019, 9, 610. [Google Scholar] [CrossRef]
- Ghosh, A.; Fearon, O.; Agustin, M.; Alonso, S.; Balda, E.C.; Franco, S.; Kalliola, A. Fractionation of Kraft Lignin for Production of Alkyd Resins for Biobased Coatings with Oxidized Lignin Dispersants as a Co-Product. ACS Omega 2024, 9, 46276–46292. [Google Scholar] [CrossRef]
- El-Mosallamy, E.-S.H.; Gabr, M.Y. Preparation and Evaluation of the Antibacterial Alkyd Resin Modified with 2,2-Di-Thiosalicylic Acid. Macromol. Indian J. 2014, 10, 53–59. [Google Scholar]
- Musa, H.; Usman, S.N. Preparation and Antimicrobial Evaluation of Neem Oil Alkyd Resin and Its Application as Binder in Oil-Based Paint. Environ. Nat. Resour. Res. 2016, 6, 92. [Google Scholar] [CrossRef]
- İşeri-Çağlar, D.; Baştürk, E.; Oktay, B.; Kahraman, M.V. Preparation and Evaluation of Linseed Oil Based Alkyd Paints. Prog. Org. Coat. 2014, 77, 81–86. [Google Scholar] [CrossRef]
- Villa, R.E.; Azimonti, G.; Bonos, E.; Christensen, H.; Durjava, M.; Dusemund, B.; Gehring, R.; Glandorf, B.; Kouba, M.; López-Alonso, M.; et al. Safety and Efficacy of a Feed Additive Consisting of an Essential Oil Derived from the Flowering Tops of Thymbra capitata L. Cav. (Spanish Type Origanum Oil) for Use in All Animal Species (FEFANA Asbl). EFSA J. 2024, 22, e9017. [Google Scholar] [CrossRef]
- Maisanaba, S.; Prieto, A.I.; Puerto, M.; Gutiérrez-Praena, D.; Demir, E.; Marcos, R.; Cameán, A.M. In Vitro Genotoxicity Testing of Carvacrol and Thymol Using the Micronucleus and Mouse Lymphoma Assays. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2015, 784, 37–44. [Google Scholar] [CrossRef]
- Lewis, J.C.; Alderton, G.; Carson, J.F.; Reynolds, D.M.; Maclay, W.D. Lupulon and Humulon—Antibiotic Constituents of Hops. J. Clin. Investig. 1949, 28, 916–919. [Google Scholar] [CrossRef]
- Paniagua-García, A.I.; Ruano-Rosa, D.; Díez-Antolínez, R. Fractionation of High-Value Compounds from Hops Using an Optimised Sequential Extraction Procedure. Antioxidants 2023, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Ly, B.C.K.; Dyer, E.B.; Feig, J.L.; Chien, A.L.; Del Bino, S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020, 140, 3–12.e1. [Google Scholar] [CrossRef]
- McGrath, J.R.; Beck, M.; Hill, M.E. Replicating Red: Analysis of Ceramic Slip Color with CIELAB Color Data. J. Archaeol. Sci. Rep. 2017, 14, 432–438. [Google Scholar] [CrossRef]
- ISO ISO 2813: 2014; Paints and Varnishes—Determination of Gloss Value at 20°, 60° and 85°. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO EN ISO 1522: 2022; Paints and Varnishes—Pendulum Damping Test. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO EN ISO 2409: 2020; Paints and Varnishes—Cross-Cut Test. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO ISO 22196: 2011; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO ISO 21702: 2019; Measurement of Antiviral Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2020.
- Pang, B.; Lam, S.S.; Shen, X.; Cao, X.; Liu, S.; Yuan, T.; Sun, R. Valorization of Technical Lignin for the Production of Desirable Resins with High Substitution Rate and Controllable Viscosity. ChemSusChem 2020, 13, 4446–4454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fu, S.; Chen, Y. Basic Understanding of the Color Distinction of Lignin and the Proper Selection of Lignin in Color-Depended Utilizations. Int. J. Biol. Macromol. 2020, 147, 607–615. [Google Scholar] [CrossRef]
- Saravari, O.; Phapant, P.; Pimpan, V. Synthesis of Water-reducible Acrylic–Alkyd Resins Based on Modified Palm Oil. J. Appl. Polym. Sci. 2005, 96, 1170–1175. [Google Scholar] [CrossRef]
- Ifijen, I.H.; Maliki, M.; Odiachi, I.J.; Aghedo, O.N.; Ohiocheoya, E.B. Review on Solvents Based Alkyd Resins and Water Borne Alkyd Resins: Impacts of Modification on Their Coating Properties. Chem. Afr. 2022, 5, 211–225. [Google Scholar] [CrossRef]
- Tursun, E.; Li, Z.; Aisa, H.A. Isolation and Identification of Soft Resins from Humulus lupulus L. Ind. Crops Prod. 2021, 172, 114014. [Google Scholar] [CrossRef]
- Denis, M.; Le Borgne, D.; Sonnier, R.; Caillol, S.; Negrell, C. Improvement of the Flame Retardant Properties of Alkyd Resins through Incorporation of Phosphorus-Containing Furan Derivative. Green. Mater. 2023, 12, 168–182. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef]
- Hwang, G.B.; Patir, A.; Allan, E.; Nair, S.P.; Parkin, I.P. Superhydrophobic and White Light-Activated Bactericidal Surface through a Simple Coating. ACS Appl. Mater. Interfaces 2017, 9, 29002–29009. [Google Scholar] [CrossRef]
- Tortora, G.J.; Funke, B.R.; Case, C.L. Microbiology: An Introduction, 9th ed.; Pearson Education: London, UK, 2013. [Google Scholar]
- Salman, G. A Comparative Study of Antibacterial Activity of ZnO and TiO2 Nanoparticles Against Gram-Positive and Gram-Negative Bacteria. Eng. Technol. J. 2023, 41, 1232–1240. [Google Scholar] [CrossRef]
- Ahmad, N.S.; Abdullah, N.; Yasin, F.M. Toxicity Assessment of Reduced Graphene Oxide and Titanium Dioxide Nanomaterials on Gram-Positive and Gram-Negative Bacteria under Normal Laboratory Lighting Condition. Toxicol. Rep. 2020, 7, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Lashgari, A.; Ghamami, S.; Golzani, M. Gram-Negative and Gram-Positive Bacteria; Antibacterial Activity of a Clay-TiO2 Nanocomposits. Bull. Environ. Pharmacol. Life Sci. 2016, 5, 53–59. [Google Scholar]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, P.; Katta, S.; Andrei, I.; Babu Rao Ambati, V.; Leonida, M.; Haas, G.J. Positive Antibacterial Co-Action between Hop (Humulus lupulus) Constituents and Selected Antibiotics. Phytomedicine 2008, 15, 194–201. [Google Scholar] [CrossRef]
- Fahle, A.; Bereswill, S.; Heimesaat, M.M. Antibacterial Effects of Biologically Active Ingredients in Hop Provide Promising Options to Fight Infections by Pathogens Including Multi-Drug Resistant Bacteria. Eur. J. Microbiol. Immunol. 2022, 12, 22–30. [Google Scholar] [CrossRef]
- Olšovská, J.; Boštíková, V.; Dušek, M.; Jandovská, V.; Bogdanová, K.; Čermák, P.; Boštík, P.; Mikyska, A.; Kolář, M. Humulus lupulus L. (Hops)—A Valuable Source of Compounds with Bioactive Effects for Future Therapies. Mil. Med. Sci. Lett. 2016, 85, 19–30. [Google Scholar] [CrossRef]
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a Natural Source of Functional Biomolecules. Appl. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- Srinivasan, V.; Goldberg, D.; Haas, G.J. Contributions to the Antimicrobial Spectrum of Hop Constituents. Econ. Bot. 2004, 58, S230–S238. [Google Scholar]
- Erzinger, G.S.; Lopes, P.C.; del Ciampo, L.F.; Zimath, S.C.; Vicente, D.; Martins de Albuquerque, F.; Prates, R.C. Bioactive Compounds of Hops Resulting from the Discarding of the Beer Industry in the Control of Pathogenic Bacteria. In Natural Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2021; pp. 41–55. [Google Scholar]
- Sun, S.; Wang, X.; Yuan, A.; Liu, J.; Li, Z.; Xie, D.; Zhang, H.; Luo, W.; Xu, H.; Liu, J.; et al. Chemical Constituents and Bioactivities of Hops (Humulus lupulus L) and Their Effects on Beer-related Microorganisms. Food Energy Secur. 2022, 11, e367. [Google Scholar] [CrossRef]
- Bogdanova, K.; Kolar, M.; Langova, K.; Dusek, M.; Mikyska, A.; Bostikova, V.; Bostik, P.; Olsovska, J. Inhibitory Effect of Hop Fractions Against Gram-Positive Multi-Resistant Bacteria. Pilot Study Biomed. Pap. 2018, 162, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Zemek, J.; Košíková, B.; Augustín, J.; Joniak, D. Antibiotic Properties of Lignin Components. Folia Microbiol. 1979, 24, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, Y.; Liu, H.; Zhang, D.; Shi, Q.-S.; Zhong, X.-Q.; Guo, Y.; Xie, X.-B. High Value Valorization of Lignin as Environmental Benign Antimicrobial. Mater. Today Bio 2023, 18, 100520. [Google Scholar] [CrossRef]
- Lin, Q.; Lim, J.Y.C.; Xue, K.; Yew, P.Y.M.; Owh, C.; Chee, P.L.; Loh, X.J. Sanitizing Agents for Virus Inactivation and Disinfection. View 2020, 1, e16. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A Story That Begs to Be Told. A Review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
Component | Alkyd Paint (A-REF) | Bio-Alkyd Paint (BA-REF) |
---|---|---|
Phase I (wt%) | ||
Water | 6.01 | 9.01 |
Dispersing agent | 1.83 | 1.83 |
Defoamer additive | 0.24 | 0.24 |
TiO2 pigment | 26.22 | 26.22 |
Rheological additive | 0.19 | 0.00 |
Phase II (wt%) | ||
Alkyd Resydrol AY 6150w (46.5%) | 60.87 | |
Bio-alkyd (47.6%) | 59.46 | |
Ammonia 29% | 0.44 | 0.44 |
Phase III (wt%) | ||
Dryer/siccative additive | 0.68 | 0.90 |
Wetting agent | 0.31 | 0.31 |
Anti-foam agent | 0.18 | 0.25 |
Levelling agent | 0.50 | 0.80 |
Anti-skinning additive | 0.54 | 0.54 |
Rheological additive | 1.00 | 0.00 |
Water | 0.99 | 0.00 |
Total (wt%) | 100.00 | 100.00 |
Solid content (wt%) | 57.34 | 57.41 |
Paint Formulation | Resin | Thymol (%) | Soft Hop Resin (%) |
---|---|---|---|
A-REF | A | - | - |
BA-REF | BA | - | - |
A-T005 | A | 0.05 | - |
A-T010 | A | 0.10 | - |
BA-T001 | BA | 0.01 | - |
BA-T003 | BA | 0.03 | - |
BA-T005 | BA | 0.05 | - |
BA-T010 | BA | 0.10 | - |
A-H015 | A | - | 0.15 |
BA-H015 | A | - | 0.15 |
BA-H025 | A | - | 0.25 |
Paint Sample | Colour (Leneta Chart) | Gloss (Dark Glass) | Persoz Hardness (Glass) | |||
---|---|---|---|---|---|---|
L* | a* | b* | ΔE* ab (D65) | |||
White plate | 94.73 ± 0.02 | 1.15 ± 0.01 | −6.54 ± 0.01 | - | - | - |
A-REF | 95.60 ± 0.03 | −0.45 ± 0.08 | 5.45 ± 0.07 | 12.12 | 68 ± 2 | 154 ± 3 |
A-T010 | 95.62 ± 0.03 | −0.47 ± 0.06 | 5.35 ± 0.07 | 12.03 | 73 ± 2 | 136 ± 2 |
A-H015 | 92.60 ± 0.02 | 0.89 ± 0.01 | 8.94 ± 0.03 | 15.63 | 50 ± 2 | 113 ± 3 |
BA-REF | 82.63 ± 0.03 | 2.90 ± 0.01 | 13.68 ± 0.03 | 23.62 | 85 ± 1 | 71 ± 2 |
BA-T005 | 82.68 ± 0.04 | 2.78 ± 0.01 | 13.58 ± 0.03 | 23.50 | 88 ± 2 | 77 ± 2 |
BA-T010 | 82.68 ± 0.04 | 2.78 ± 0.01 | 13.58 ± 0.03 | 23.50 | 88 ± 2 | 75 ± 2 |
BA-H015 | 80.44 ± 0.03 | 3.00 ± 0.06 | 15.38 ± 0.06 | 26.23 | 78 ± 2 | 44 ± 2 |
Sample | Metal |
---|---|
Primer + A-REF | Class 0 |
A-REF | Class 1 |
Primer + BA-REF | Class 0 |
BA-REF | Class 1 |
Sample | Water Contact Angle (°) |
---|---|
A-REF | 65 ± 3 |
BA-REF | 83 ± 3 |
Paint Name | Time of Incubation (h) | Log (CFU/cm2) | Antibacterial Activity (R) | ||
---|---|---|---|---|---|
E. coli | S. aureus | E. coli | S. aureus | ||
A-REF | 0 | 5.16 ± 0.03 | 5.35 ± 0.11 | NO | YES |
A-REF | 24 | 4.96 ± 0.01 | 0.80 ± 0.00 | ||
A-REF | 0 | 5.06 ± 0.02 | 5.35 ± 0.11 | YES (4.16 ± 0.01) | YES |
A-REF | 24 | 4.96 ± 0.01 | 0.80 ± 0.00 | ||
A-T005 | 24 | 0.80 ± 0.00 | 0.80 ± 0.00 | ||
A-REF | 0 | 5.06 ± 0.02 | 5.35± 0.11 | YES (4.16 ± 0.01) | YES |
A-REF | 24 | 4.96 ± 0.01 | 0.80 ± 0.00 | ||
A-T010 | 24 | 0.80 ± 0.00 | 0.80 ± 0.00 | ||
A-REF | 0 | 4.82 ± 0.10 | 5.35 ± 0.11 | YES (3.00 ± 0.01) | YES |
A-REF | 24 | 3.79 ± 0.01 | 0.80 ± 0.00 | ||
A-H015 | 24 | 0.80 ± 0.00 | 0.80 ± 0.00 | ||
BA-REF | 0 | 4.79 ± 0.07 | 4.92 ± 0.04 | NO | YES |
BA-REF | 24 | 4.09 ± 0.04 | 0.80 ± 0.00 | ||
BA-REF | 0 | 5.24 ± 0.04 | NO (0.04 ± 0.00) | NA | |
BA-REF | 24 | 4.48 ± 0.12 | - | ||
BA-T001 | 24 | 4.44 ± 0.12 | |||
BA-REF | 0 | 5.24 ± 0.04 | NO (−0.10 ± 0.00) | NA | |
BA-REF | 24 | 4.48 ± 0.12 | - | ||
BA-T003 | 24 | 4.58 ± 0.11 | |||
BA-REF | 0 | 4.95 ± 0.05 | 4.92 ± 0.04 | YES (2.15 ± 0.05) | YES |
BA-REF | 24 | 2.95 ± 0.05 | 0.80 ± 0.00 | ||
BA-T005 | 24 | 0.80 ± 0.00 | 0.80 ± 0.00 | ||
BA-REF | 0 | 4.79 ± 0.08 | NO (0.16 ± 0.09) | NA | |
BA-REF | 24 | 4.09 ± 0.04 | - | ||
BA-H015 | 24 | 3.93 ± 0.06 | |||
BA-REF | 0 | 5.24 ± 0.04 | NO (−0.18 ± 0.14) | NA | |
BA-REF | 24 | 4.48 ± 0.12 | - | ||
BA-H025 | 24 | 4.66 ± 0.07 |
Condition | Criteria | Test Results | Validation Test |
---|---|---|---|
Maximum and minimum plaque count alignment * | (Lmax − Lmin)/(Lmean) ≤ 0.2 | (1.36 − 1.15)/1.25 = 0.168 | Passed |
Initial viral titre (U0) ** | U0 range 2.5 × 105–1.2 × 106 PFUs/cm2 | U0 = 1.1 × 106 PFUs/cm2 | Passed |
Viral titre at 24 h (Ut) *** | Ut ≥ 6.2 × 102 PFUs/cm2 | Ut = 1.10 × 105 PFUs/cm2 | Passed |
Absence of cytotoxic effects and inactivation or antiviral activity **** | No adverse effects on host cells; effective inactivation in SCDLP broth | Suppressive efficiency of agent’s activity confirmed | Passed |
Log Viral Titre (PFUs/cm2) | Antiviral Activity (R) | % Reduction | |
---|---|---|---|
Control at 0 h | 6.03 ± 0.11 | - | - |
Control at 24 h | 5.04 ± 0.06 | - | - |
BA-T010 at 24 h | 1.62 ± 0.00 | 3.42 | 99.996 |
BA-H015 at 24 h | 1.80 ± 0.17 | 3.24 | 99.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etxeberria, I.; Garcia, J.; Ibáñez, A.; García-Moyano, A.; Paniagua-García, A.I.; Díaz, Y.; Díez-Antolínez, R.; Barrio, A. Antimicrobial Activity of Lignin-Based Alkyd Coatings Containing Soft Hop Resins and Thymol. Coatings 2025, 15, 445. https://doi.org/10.3390/coatings15040445
Etxeberria I, Garcia J, Ibáñez A, García-Moyano A, Paniagua-García AI, Díaz Y, Díez-Antolínez R, Barrio A. Antimicrobial Activity of Lignin-Based Alkyd Coatings Containing Soft Hop Resins and Thymol. Coatings. 2025; 15(4):445. https://doi.org/10.3390/coatings15040445
Chicago/Turabian StyleEtxeberria, Idoia, Jaime Garcia, Ana Ibáñez, Antonio García-Moyano, Ana I. Paniagua-García, Yuleima Díaz, Rebeca Díez-Antolínez, and Aitor Barrio. 2025. "Antimicrobial Activity of Lignin-Based Alkyd Coatings Containing Soft Hop Resins and Thymol" Coatings 15, no. 4: 445. https://doi.org/10.3390/coatings15040445
APA StyleEtxeberria, I., Garcia, J., Ibáñez, A., García-Moyano, A., Paniagua-García, A. I., Díaz, Y., Díez-Antolínez, R., & Barrio, A. (2025). Antimicrobial Activity of Lignin-Based Alkyd Coatings Containing Soft Hop Resins and Thymol. Coatings, 15(4), 445. https://doi.org/10.3390/coatings15040445