Enhanced Flame Retardancy of Unsaturated Polyester Resin via Simultaneously Using a Novel DOPO-Based Organic Flame Retardant and Modified Silicon Carbide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of DOPO-TAIC
2.3. Preparation of UP/DOPO-TAIC
2.4. Preparation of Modified SiC(M-SiC)
2.5. Preparation of UP/DOPO-TAIC/M-SiC Composites
2.6. Characterization
3. Results and Discussion
3.1. Structural Analysis of DOPO-TAIC
3.2. Thermal Stability and Flame Retardancy of UP/DOPO-TAIC
3.3. Morphologies and Structure of M-SiC
3.4. Microstructural Analysis of UP/DOPO-TAIC/M-SiC Composites
3.5. Flame Retardancy Properties of UP/DOPO-TAIC/M-SiC Composites
3.6. Characterization of Residual Carbon in UP/DOPO-TAIC/M-SiC Composite After Combustion
3.7. Mechanical Properties of UP/DOPO-TAIC/M-SiC Composite After Combustion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vahabi, H.; Kandola, B.K.; Saeb, M.R. Flame Retardancy Index for Thermoplastic Composites. Polymers 2019, 11, 407. [Google Scholar] [CrossRef] [PubMed]
- Kicko-Walczak, E.; Rymarz, G. Recent developments in fire-retardant thermoset resins using inorganic-organic hybrid flame retardants. J. Polym. Eng. 2018, 38, 563–571. [Google Scholar]
- Kandola, B.K.; Krishnan, L.; Deli, D.; Ebdon, J.R. Blends of unsaturated polyester and phenolic resins for application as fire-resistant matrices in fibre-reinforced composites. Part 2: Effects of resin structure, compatibility and composition on fire performance. Polym. Degrad. Stab. 2015, 113, 154–167. [Google Scholar]
- Seraji, S.M.; Gan, H.; Swan, S.R.; Varley, R.J. Phosphazene as an effective flame retardant for rapid curing epoxy resins. React. Funct. Polym. 2021, 164, 104910. [Google Scholar]
- Weil, E.D.; Levchik, S.V. Commercial Flame Retardancy of Unsaturated Polyester and Vinyl Resins: Review. J. Fire Sci. 2004, 22, 293–303. [Google Scholar]
- Kandola, B.K.; Ebdon, J.R.; Chowdhury, K.P. Chowdhury. Flame Retardance and Physical Properties of Novel Cured Blends of Unsaturated Polyester and Furan Resins. Polymers 2015, 7, 298–315. [Google Scholar]
- Wazarkar, K.; Kathalewar, M.; Sabnis, A. Flammability behavior of unsaturated polyesters modified with novel phosphorous containing flame retardants. Polym. Compos. 2017, 38, 1483–1491. [Google Scholar]
- Zhang, Q.; Xu, B.; Zhou, H.; Qian, L. A facile strategy to simultaneously enhance the flame retardancy, toughness and ultraviolet shielding performance of unsaturated polyester resin: Adjusting the unsaturated degree of flame retardant. Polymer 2024, 301, 127035. [Google Scholar]
- Reuter, J.; Greiner, L.; Kukla, P.; Doring, M. Efficient flame retardant interplay of unsaturated polyester resin formulations based on ammonium polyphosphate. Polym. Degrad. Stab. 2020, 178, 109134. [Google Scholar]
- Kandola, B.K.; Ebdon, J.R.; Luangtriratana, P.; Krishnan, L. Novel flame retardant thermoset resin blends derived from a free-radically cured vinylbenzylated phenolic novolac and an unsaturated polyester for marine composites. Polym. Degrad. Stab. 2016, 127, 56–64. [Google Scholar]
- Reuter, J.; Greiner, L.; Schönberger, F.; Döring, M. Cooperative flame retardant interplay of phosphorus containing flame retardants with aluminum trihydrate depending on the specific surface area in unsaturated polyester resin. J. Appl. Polym. Sci. 2019, 136, 47270. [Google Scholar]
- Seraji, S.M.; Song, P.; Varley, R.J.; Bourbigot, S.; Voice, D.; Wang, H. Fire-retardant unsaturated polyester thermosets: The state-of-the-art, challenges and opportunities. Chem. Eng. J. 2022, 430, 132785. [Google Scholar]
- Li, P.; Wang, J.; Wang, C.; Xu, C.; Ni, A. The flame retardant and mechanical properties of the epoxy modified by an efficient DOPO-based flame retardant. Polymers 2024, 16, 631. [Google Scholar] [CrossRef]
- Jiao, D.; Zhao, H.; Sima, H.; Cheng, C.; Liu, B.; Zhang, C. Engineering flame retardant epoxy resins with strengthened mechanical property by using reactive catechol functionalized DOPO compounds. Chem. Eng. J. 2024, 485, 149910. [Google Scholar]
- Yang, Y.; Wang, D.Y.; Jian, R.K.; Liu, Z.; Huang, G. Chemical structure construction of DOPO-containing compounds for flame retardancy of epoxy resin: A review. Prog. Org. Coat. 2023, 175, 107316. [Google Scholar]
- Liang, S.; Hemberger, P.; Steglich, M.; Simonetti, P.; Levalois-Grützmacher, J.; Grützmacher, H.; Gaan, S. The underlying chemistry to the formation of PO2 radicals from organophosphorus compounds: A missing puzzle piece in flame chemistry. Chem. Eur. J. 2020, 26, 10795–10800. [Google Scholar]
- Chu, F.; Hu, W.; Song, L.; Hu, Y. State-of-the-Art Research in Flame-Retardant Unsaturated Polyester Resins: Progress, Challenges and Prospects. Fire Technol. 2022, 60, 1077–1118. [Google Scholar]
- Battig, A.; Müller, P.; Bertin, A.; Schartel, B. Hyperbranched rigid aromatic phosphorus-containing flame retardants for epoxy resins. Macromol. Mater. Eng. 2021, 306, 2000731. [Google Scholar]
- Chi, Z.; Guo, Z.; Xu, Z.; Zhang, M.; Li, M.; Shang, L.; Ao, Y. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism. Polym. Degrad. Stab. 2020, 176, 109151. [Google Scholar]
- Jin, S.; Liu, Z.; Qian, L.; Qiu, Y.; Chen, Y.; Xu, B. Epoxy thermoset with enhanced flame retardancy and physical-mechanical properties based on reactive phosphaphenanthrene compound. Polym. Degrad. Stab. 2020, 172, 109063. [Google Scholar]
- Wang, J.; Li, J.; Meng, X.; Gao, X.; Yan, H. Synthesis of a novel DOPO-substituted charring agent containing triazine for reducing the fire hazard of polypropylene. J. Polym. Res. 2022, 29, 380. [Google Scholar] [CrossRef]
- Wang, S.; Lou, S.; Fan, P.; Ma, L.; Liu, J.; Tang, T. A novel aromatic imine-containing DOPO-based reactive flame retardant towards enhanced flame-retardant and mechanical properties of epoxy resin. Polym. Degrad. Stab. 2023, 213, 110364. [Google Scholar]
- Chen, R.; Hu, K.; Tang, H.; Wang, J.; Zhu, F.; Zhou, H. A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: Flame retardance, thermal stability and pyrolysis behavior. Polym. Degrad. Stab. 2019, 166, 334–343. [Google Scholar] [CrossRef]
- Wang, X.; He, W.; Long, L.; Huang, S.; Qin, S.; Xu, G. A phosphorus-and nitrogen-containing DOPO derivative as flame retardant for polylactic acid (PLA). J. Therm. Anal. 2021, 145, 331–343. [Google Scholar] [CrossRef]
- Yang, J.; Song, X.; Chen, X.; Wang, Y.; Shi, J.; Zheng, Z.; Xu, H.; Liu, L. A soluble Salen-DOPO flame retardant for efficiently improving PBAT/PLLA film. Chem. Eng. J. 2023, 476, 146669. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Z.; Ma, H.; Zhou, Y.; Tian, X.; Sheng, D.; Liu, X.; Yang, Y. Waterborne Polyurethane/Cellulose Composite Aerogel with Passive Cooling and Thermal Insulation Properties. J. Appl. Polym. Sci. 2024, 141, e56158. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Li, Z.; Huang, G.; Wu, G. Efficient flame retardancy, good thermal stability, mechanical enhancement, and transparency of DOPO-conjugated structure compound on epoxy resin. Chem. Eng. J. 2022, 450, 138424. [Google Scholar] [CrossRef]
- He, Y.; Cui, X.; Liu, Z.; Lan, F.; Sun, J.; Li, H.; Gu, X.; Zhang, S. A new approach to prepare flame retardant epoxy resin with excellent transmittance, mechanical properties, and anti-aging performance by the incorporation of DOPO derivative. Polym. Degrad. Stab. 2023, 218, 110579. [Google Scholar] [CrossRef]
- Cheng, R.; Chen, H.; Chen, Y.; Shen, C.; Gao, S. Effects of a phosphorus-nitrogen containing DOPO derivative on the flame retardancy and mechanical properties of polylactic acid foamed materials. Polym. Degrad. Stab. 2024, 225, 110790. [Google Scholar]
- Zhao, W.; Zhao, H.-B.; Cheng, J.-B.; Li, W.; Zhang, J.; Wang, Y.-Z. A green, durable and effective flame-retardant coating for expandable polystyrene foams. Chem. Eng. J. 2022, 440, 135807. [Google Scholar]
- Arfiana; Saputra, A.H.; Murti, S.D.S.; Saputra, H. Study on the Flammability and Thermal Stability of Non Halogen UPR-Based Fire Retardant Composite through Combination of Carbon Black and Hydroxide Additives. Macromol. Symp. 2020, 391, 1900176. [Google Scholar]
- Zhang, S.; Li, B.; Lin, M.; Li, Q.; Gao, S.; Yi, W. Effect of a novel phosphorus-conataining compound on the flame retardancy and thermal degradation of intumescent flame retardant polypropylene. J. Appl. Polym. Sci. 2011, 122, 3430–3439. [Google Scholar]
- Zhang, Y.; Yan, H.; Feng, G.; Liu, R.; Yang, K.; Feng, W.; Zhang, S.; He, C. Non-aromatic Si, P, N-containing hyperbranched flame retardant on reducing fire hazards of epoxy resin with desirable mechanical properties and lower curing temperature. Compos. Part B Eng. 2021, 222, 109043. [Google Scholar]
- Sun, J.; Zhang, D.; Wang, B.; Xia, Y.; Zhang, Y.; Guo, Z.; Fang, Z.; Li, J.; Chen, P. Flame retardancy and toughness of epoxy resin induced by a star-shaped flame retardant containing P/Si/B. React. Funct. Polym. 2023, 190, 105649. [Google Scholar]
- Hu, Z.; Chen, L.; Zhao, B.; Luo, Y.; Wang, D.-Y.; Wang, Y.-Z. A novel efficient halogen-free flame retardant system for polycarbonate. Polym. Degrad. Stab. 2011, 96, 320–327. [Google Scholar]
- Tibiletti, L.; Ferry, L.; Longuet, C.; Mas, A.; Robin, J.-J.; Lopez-Cuesta, J.-M. Thermal degradation and fire behavior of thermoset resins modified with phosphorus containing styrene. Polym. Degrad. Stab. 2012, 97, 2602–2610. [Google Scholar]
- Wu, P.; Peng, Y.; Zhang, X.; Zhang, G.; Ran, J.; Xu, M. Unsaturated polyester resin modified with a novel reactive flame retardant: Effects on thermal stability and flammability. J. Polym. Eng. 2022, 42, 818–826. [Google Scholar]
- Jin, X.; Xu, J.; Pan, Y.; Wang, H.; Ma, B.; Liu, F.; Yan, X.; Wu, C.; Huang, H.; Cheng, H.; et al. Light weight multiscale needle-punched quartz fiber felt reinforced silicon carbide modified phenolic aerogel nanocomposites with enhanced mechanical, insulating and flame retardant properties. Compos. Sci. Technol. 2021, 215, 109100. [Google Scholar]
- Zhang, L.; Wang, H.; Li, Y. Dopamine-modified ammonium polyphosphate as an efficient intumescent flame retardant for thermoplastic polyurethane elastomers. J. Appl. Polym. Sci. 2023, 130, 1234–1245. [Google Scholar]
- Shcherbakov, A.; Mostovoy, A.; Bekeshev, A.; Burmistrov, I.; Arzamastsev, S.; Lopukhova, M. Effect of Microwave Irradiation at Different Stages of Manufacturing Unsaturated Polyester Nanocomposite. Polymers 2022, 14, 4594. [Google Scholar] [CrossRef]
- Lei, D.; Ma, W.; Wang, L.; Zhang, D. Preparation of 2-ethyl-4- methylimidazole derivatives as latent curing agents and their application in curing epoxy resin. J. Appl. Polym. Sci. 2015, 132, 42563. [Google Scholar]
- Liu, L.; Li, M. Curing mechanisms and kinetic analysis of DGEBA cured with a novel imidazole derivative curing agent using DSC techniques. J. Appl. Polym. Sci. 2010, 117, 3220–3227. [Google Scholar]
- Shi, X.; Li, H.; Guan, H.; Li, D.; Wang, C.; Wang, Y.; Lu, X. Tribological behavior of polydopamine-modified boron nitride nanoplatelets-reinforced silicate ceramic coatings. Ceram. Int. 2025. [Google Scholar] [CrossRef]
- Wang, X.; Jia, X.; Ren, H.; Yang, J.; Song, H. Breathable, self-cleaning superhydrophobic DDA-PDA@ BNNS/silicon resin coating. Prog. Org. Coat. 2024, 192, 108515. [Google Scholar]
- Zhang, H.L.; Zuo, X.B.; Sun, Q.Q.; Liu, J.Y.; Zou, Y.X.; Zhang, T.T.; Tian, J.L. Preparation of h-BN @ ZnO composite epoxy coating for improve durability and antibacterial properties of concrete. Constr. Build. Mater. 2024, 438, 137082. [Google Scholar]
- Song, C.; Chen, Z.; Duan, C.; Li, C.; Kawi, S.; Li, Y. Polydopamine-boron nitride nanosheet composites with core-shell structures modified PMIA separator for enhanced performance of high-power lithium-ion batteries. J. Energy Storage 2024, 98, 113020. [Google Scholar]
- Jiang, Q.; Luo, Z.; Wang, B. A phosphorous/nitrogen/silicon containing diphenylphosphoramide silicon oil toward effective flame retardancy for polycarbonate with comparable mechanical properties. J. Appl. Polym. Sci. 2022, 139, 51755. [Google Scholar]
- Howell, B.A. Thermal degradation of organophosphorus flame retardants. Polymers 2022, 14, 4929. [Google Scholar] [CrossRef]
- Schäfer, A.; Seibold, S.; Lohstroh, W.; Walter, O.; Döring, M. Synthesis and properties of flame-retardant epoxy resins based on 9,10-dihydro-9-oxa-10-phosphaphe-nanthrene-10-oxide and one of its analogues. J. Appl. Polym. Sci. 2007, 105, 685–696. [Google Scholar]
- Liang, S.; Hemberger, P.; Neisius, N.M.; Bodi, A.; Grützmacher, H.; Levalois-Grützmacher, J.; Gaan, S. Elucidating the Thermal Decomposition of Dimethyl Methylphosphonate by Vacuum Ultraviolet (VUV) Photoionization: Pathways to the PO Radical, a Key Species in Flame-Retardant Mechanisms. Chem. A. Eur. J. 2015, 21, 1073–1080. [Google Scholar]
Sample | UP/wt.% | DOPO-TAIC/wt.% | OT/wt.% |
---|---|---|---|
UP | 99 | 0 | 1 |
UP/DOPO-TAIC-5 | 94 | 5 | 1 |
UP/DOPO-TAIC-10 | 89 | 10 | 1 |
UP/DOPO-TAIC-15 | 84 | 15 | 1 |
Sample | UP/wt.% | DOPO-TAIC/wt.% | OT/wt.% | M-SiC/wt.% |
---|---|---|---|---|
UP/DOPO-TAIC/M-SiC-5 | 79 | 15 | 1 | 5 |
UP/DOPO-TAIC/M-SiC-10 | 74 | 15 | 1 | 10 |
UP/DOPO-TAIC/M-SiC-15 | 69 | 15 | 1 | 15 |
UP/DOPO-TAIC/M-SiC-20 | 64 | 15 | 1 | 20 |
UP/DOPO-TAIC/M-SiC-30 | 54 | 15 | 1 | 30 |
Sample | T5% (°C) | Tmax (°C) | Residue at 800 °C/% |
---|---|---|---|
UP | 243 | 422 | 0 |
UP/DOPO-TAIC-5 | 236 | 420 | 4.89 |
UP/DOPO-TAIC-10 | 229 | 420 | 4.83 |
UP/DOPO-TAIC-15 | 231 | 416 | 4.69 |
UP/DOPO-TAIC-20 | 227 | 413 | 4.82 |
Sample | P/wt.% | LOI/% | UL-94 Rating |
---|---|---|---|
UP | 0 | 18.8 ± 0.2 | NR |
UP/DOPO-TAIC-5 | 0.33 | 20.6 ± 0.3 | NR |
UP/DOPO-TAIC-10 | 0.67 | 24.5 ± 0.4 | V-2 |
UP/DOPO-TAIC-15 | 1.00 | 27.5 ± 0.3 | V-0 |
UP/DOPO-TAIC-20 | 1.34 | 28.0 ± 0.4 | V-0 |
Sample | UP | UP/DOPO-TAIC-5 | UP/DOPO-TAIC-10 | UP/DOPO-TAIC-15 | UP/DOPO-TAIC-20 |
---|---|---|---|---|---|
TTI (s) | 37 | 38 | 39 | 45 | 35 |
pk-HRR/kWm2 | 1012 | 781 | 638 | 591 | 497 |
av-HRR/kWm2 | 117 | 68.5 | 92.0 | 65.8 | 89.3 |
av-EHC/MJKg−1 | 10.8 | 9.30 | 10.7 | 8.65 | 13.2 |
av-COY/Kg Kg−1 | 0.023 | 0.115 | 0.162 | 0.208 | 0.271 |
av-CO2Y/Kg Kg−1 | 3.43 | 3.66 | 3.363 | 3.204 | 3.54 |
THR/MJ m−1 | 59.1 | 49.3 | 44.0 | 37.1 | 50.2 |
Residual mass (%) | 1.06 | 1.12 | 3.77 | 9.05 | 6.04 |
Sample | T5% (°C) | Tmax (°C) | Residue at 800 °C/% |
---|---|---|---|
UP | 243 | 422 | 0 |
UP/DOPO-TAIC/M-SiC-5 | 226 | 402 | 10.1 |
UP/DOPO-TAIC/M-SiC-10 | 223 | 401 | 15.4 |
UP/DOPO-TAIC/M-SiC-15 | 220 | 400 | 20.1 |
UP/DOPO-TAIC/M-SiC-20 | 217 | 397 | 25.9 |
UP/DOPO-TAIC/M-SiC-30 | 210 | 393 | 33.3 |
Sample | LOI/% | UL-94 Rating |
---|---|---|
UP | 18.8 ± 0.2 | NR |
UP/DOPO-TAIC-15 | 27.5 ± 0.3 | V-0 |
UP/DOPO-TAIC/M-SiC-5 | 27.7 ± 0.3 | V-0 |
UP/DOPO-TAIC/M-SiC-10 | 28.5 ± 0.4 | V-0 |
UP/DOPO-TAIC/M-SiC-15 | 29.3 ± 0.3 | V-0 |
UP/DOPO-TAIC/M-SiC-20 | 29.7 ± 0.4 | V-0 |
UP/DOPO-TAIC/M-SiC-30 | 30.8 ± 0.5 | V-0 |
Sample | UP | UP/DOPO-TAIC-15 | UP/DOPO-TAIC/M-SiC-5 | UP/DOPO-TAIC/M-SiC-30 |
---|---|---|---|---|
TTI (s) | 37 | 45 | 56 | 63 |
pk-HRR (kW/m2) | 1012 | 591 | 524 | 488 |
av-HRR (kW/m2) | 117 | 65.8 | 60.2 | 50.0 |
av-EHC (MJ/Kg−1) | 10.8 | 8.65 | 10.9 | 11.0 |
av-COY (Kg/Kg−1) | 0.023 | 0.208 | 0.273 | 0.305 |
av-CO2Y (Kg/Kg−1) | 3.43 | 3.20 | 2.65 | 2.44 |
THR (MJ/m−1) | 59.1 | 37.1 | 38.4 | 38.8 |
Residual mass (%) | 1.06 | 9.05 | 9.82 | 31.8 |
Sample | C (wt.%) | O (wt.%) | Si (wt.%) |
---|---|---|---|
UP | 77.01 | 22.84 | - |
UP/DOPO-TAIC-15 | 79.33 | 19.67 | - |
UP/DOPO-TAIC/M-SiC-5 | 50.68 | 5.68 | 43.67 |
UP/DOPO-TAIC/M-SiC-30 | 43.97 | 2.89 | 53.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.; Hu, J.; Liu, C.; He, P.; You, F.; Yang, H.; Xu, M. Enhanced Flame Retardancy of Unsaturated Polyester Resin via Simultaneously Using a Novel DOPO-Based Organic Flame Retardant and Modified Silicon Carbide. Coatings 2025, 15, 376. https://doi.org/10.3390/coatings15040376
Wu P, Hu J, Liu C, He P, You F, Yang H, Xu M. Enhanced Flame Retardancy of Unsaturated Polyester Resin via Simultaneously Using a Novel DOPO-Based Organic Flame Retardant and Modified Silicon Carbide. Coatings. 2025; 15(4):376. https://doi.org/10.3390/coatings15040376
Chicago/Turabian StyleWu, Piye, Jingjie Hu, Chanyu Liu, Ping He, Feng You, Hao Yang, and Man Xu. 2025. "Enhanced Flame Retardancy of Unsaturated Polyester Resin via Simultaneously Using a Novel DOPO-Based Organic Flame Retardant and Modified Silicon Carbide" Coatings 15, no. 4: 376. https://doi.org/10.3390/coatings15040376
APA StyleWu, P., Hu, J., Liu, C., He, P., You, F., Yang, H., & Xu, M. (2025). Enhanced Flame Retardancy of Unsaturated Polyester Resin via Simultaneously Using a Novel DOPO-Based Organic Flame Retardant and Modified Silicon Carbide. Coatings, 15(4), 376. https://doi.org/10.3390/coatings15040376