Survey of Indigenous Bacteria as a Simplified Alternative to Produce Self-Healing Cementitious Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Ratio
2.3. Bacteria Survey
2.4. Sample Production
2.5. Cracking and Self-Healing
2.6. Post-Healing Evaluation
3. Results and Discussion
3.1. Bacterial Survey
3.2. Crack Sealing
3.3. Morphology and Mineral Composition of Healing Products
3.4. Mechanical Compressive Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raza, A.; El Ouni, M.H.; Khan, Q.U.Z.; Azab, M.; Khan, D.; Elhadi, K.M.; Alashker, Y. Sustainability Assessment, Structural Performance and Challenges of Self-Healing Bio-Mineralized Concrete: A Systematic Review for Built Environment Applications. J. Build. Eng. 2023, 66, 105839. [Google Scholar] [CrossRef]
- Bagga, M.; Hamley-Bennett, C.; Alex, A.; Freeman, B.L.; Justo-Reinoso, I.; Mihai, I.C.; Gebhard, S.; Paine, K.; Jefferson, A.D.; Masoero, E.; et al. Advancements in Bacteria Based Self-Healing Concrete and the Promise of Modelling. Constr. Build. Mater. 2022, 358, 129412. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Wu, L.; Wang, H. Theoretical Quantification for Cracks Repair Based on Microbially Induced Carbonate Precipitation (MICP) Method. Cem. Concr. Compos. 2021, 118, 103950. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Shaikh, F.U.A. A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. J. Compos. Sci. 2022, 6, 23. [Google Scholar] [CrossRef]
- Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global Strategies and Potentials to Curb CO2 Emissions in Cement Industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Hermawan, H.; Minne, P.; Serna, P.; Gruyaert, E. Understanding the Impacts of Healing Agents on the Properties of Fresh and Hardened Self-Healing Concrete: A Review. Processes 2021, 9, 2206. [Google Scholar] [CrossRef]
- Qureshi, T.; Al-Tabbaa, A. Self-Healing Concrete and Cementitious Materials. In Advanced Functional Materials; Tasaltin, N., Sunday Nnamchi, P., Saud, S., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-83962-479-7. [Google Scholar]
- Amran, M.; Onaizi, A.M.; Fediuk, R.; Vatin, N.I.; Muhammad Rashid, R.S.; Abdelgader, H.; Ozbakkaloglu, T. Self-Healing Concrete as a Prospective Construction Material: A Review. Materials 2022, 15, 3214. [Google Scholar] [CrossRef]
- Reinhardt, H.-W.; Jooss, M. Permeability and Self-Healing of Cracked Concrete as a Function of Temperature and Crack Width. Cem. Concr. Res. 2003, 33, 981–985. [Google Scholar] [CrossRef]
- Nodehi, M.; Ozbakkaloglu, T.; Gholampour, A. A Systematic Review of Bacteria-Based Self-Healing Concrete: Biomineralization, Mechanical, and Durability Properties. J. Build. Eng. 2022, 49, 104038. [Google Scholar] [CrossRef]
- Dinarvand, P.; Rashno, A. Review of the Potential Application of Bacteria in Self-Healing and the Improving Properties of Concrete/Mortar. J. Sustain. Cem. Based Mater. 2022, 11, 250–271. [Google Scholar] [CrossRef]
- Ahmad, I.; Shokouhian, M.; Jenkins, M.; McLemore, G.L. Quantifying the Self-Healing Efficiency of Bioconcrete Using Bacillus Subtilis Immobilized in Polymer-Coated Lightweight Expanded Clay Aggregates. Buildings 2024, 14, 3916. [Google Scholar] [CrossRef]
- Fahimizadeh, M.; Pasbakhsh, P.; Mae, L.S.; Tan, J.B.L.; Raman, R.K.S. Multifunctional, Sustainable, and Biological Non-Ureolytic Self-Healing Systems for Cement-Based Materials. Engineering 2022, 13, 217–237. [Google Scholar] [CrossRef]
- Mello, V.; Pacheco, F.; Tutikian, B.F. Técnicas e Metodologias de Biomineralização Na Cicatrização de Fissuras Do Concreto. Rev. Arquitetura IMED 2019, 8, 164. [Google Scholar] [CrossRef]
- Achal, V.; Mukerjee, A.; Sudhakara Reddy, M. Biogenic Treatment Improves the Durability and Remediates the Cracks of Concrete Structures. Constr. Build. Mater. 2013, 48, 1–5. [Google Scholar] [CrossRef]
- Rauf, M.; Khaliq, W.; Khushnood, R.A.; Ahmed, I. Comparative Performance of Different Bacteria Immobilized in Natural Fibers for Self-Healing in Concrete. Constr. Build. Mater. 2020, 258, 119578. [Google Scholar] [CrossRef]
- Seifan, M.; Samani, A.K.; Berenjian, A. Bioconcrete: Next Generation of Self-Healing Concrete. Appl. Microbiol. Biotechnol. 2016, 100, 2591–2602. [Google Scholar] [CrossRef]
- Islam, S.U.; Waseem, S.A. Bibliometrics and Meta -Analysis of Self-Healing Bio-Concrete—A Systematic Review. Eur. J. Environ. Civ. Eng. 2024, in press. [CrossRef]
- Anbu, P.; Kang, C.-H.; Shin, Y.-J.; So, J.-S. Formations of Calcium Carbonate Minerals by Bacteria and Its Multiple Applications. SpringerPlus 2016, 5, 250. [Google Scholar] [CrossRef]
- Pacheco, V.L.; Bragagnolo, L.; Reginatto, C.; Thomé, A. Microbially Induced Calcite Precipitation (MICP): Review from an Engineering Perspective. Geotech. Geol. Eng. 2022, 40, 2379–2396. [Google Scholar] [CrossRef]
- Aytekin, B.; Mardani, A.; Yazıcı, Ş. State-of-Art Review of Bacteria-Based Self-Healing Concrete: Biomineralization Process, Crack Healing, and Mechanical Properties. Constr. Build. Mater. 2023, 378, 131198. [Google Scholar] [CrossRef]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A.; Macias Franco, M.R.; Narayanasamy, R.; Balagurusamy, N. Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Front. Mater. 2019, 6, 126. [Google Scholar] [CrossRef]
- Fahimizadeh, M.; Diane Abeyratne, A.; Mae, L.S.; Singh, R.K.R.; Pasbakhsh, P. Biological Self-Healing of Cement Paste and Mortar by Non-Ureolytic Bacteria Encapsulated in Alginate Hydrogel Capsules. Materials 2020, 13, 3711. [Google Scholar] [CrossRef] [PubMed]
- Justo-Reinoso, I.; Reeksting, B.J.; Hamley-Bennett, C.; Heath, A.; Gebhard, S.; Paine, K. Air-Entraining Admixtures as a Protection Method for Bacterial Spores in Self-Healing Cementitious Composites: Healing Evaluation of Early and Later-Age Cracks. Constr. Build. Mater. 2022, 327, 126877. [Google Scholar] [CrossRef]
- Qu, Z.; Guo, S.; Zheng, Y.; Giakoumatos, E.C.; Yu, Q.; Voets, I.K. A Simple Method to Create Hydrophobic Mortar Using Bacteria Grown in Liquid Cultures. Constr. Build. Mater. 2021, 297, 123744. [Google Scholar] [CrossRef]
- Rossi, E.; Raghavan, A.; Copuroglu, O.; Jonkers, H.M. Assessment of Functional Performance, Self-Healing Properties and Degradation Resistance of Poly-Lactic Acid and Polyhydroxyalkanoates Composites. Polymers 2022, 14, 926. [Google Scholar] [CrossRef]
- Algaifi, H.A.; Bakar, S.A.; Alyousef, R.; Mohd Sam, A.R.; Ibrahim, M.H.W.; Shahidan, S.; Ibrahim, M.; Salami, B.A. Bio-Inspired Self-Healing of Concrete Cracks Using New B. Pseudomycoides Species. J. Mater. Res. Technol. 2021, 12, 967–981. [Google Scholar] [CrossRef]
- Chaerun, S.K.; Syarif, R.; Wattimena, R.K. Bacteria Incorporated with Calcium Lactate Pentahydrate to Improve the Mortar Properties and Self-Healing Occurrence. Sci. Rep. 2020, 10, 17873. [Google Scholar] [CrossRef]
- Joshi, S.; Goyal, S.; Sudhakara Reddy, M. Bio-Consolidation of Cracks with Fly Ash Amended Biogrouting in Concrete Structures. Constr. Build. Mater. 2021, 300, 124044. [Google Scholar] [CrossRef]
- Deliktaş, E.B. Investigation of Using Cave Bacteria in the Production of Self-Healing Mortars. Sigma J. Eng. Nat. Sci. 2024, 42, 1712–1728. [Google Scholar] [CrossRef]
- Jonkers, H.M. Bacteria-Based Self-Healing Concrete. HERON 2011, 56, 49–79. [Google Scholar]
- Lee, Y.S.; Park, W. Current Challenges and Future Directions for Bacterial Self-Healing Concrete. Appl. Microbiol. Biotechnol. 2018, 102, 3059–3070. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, W.; Ehsan, M.B. Crack Healing in Concrete Using Various Bio Influenced Self-Healing Techniques. Constr. Build. Mater. 2016, 102, 349–357. [Google Scholar] [CrossRef]
- Soares, T.V.; Effting, C.; Miranda, K.W.; Schackow, A. Application of Bacterial Nanofibrillated Cellulose for Performance Improvement in Vermiculite Lightweight Mortar. Constr. Build. Mater. 2024, 449, 138474. [Google Scholar] [CrossRef]
- Zhang, G.-Z.; Li, S.; Li, H.-F.; Zhang, K.; Cheng, P.-F. Enhancing Self-Healing Performance of Microbial Mortar through Carbon Fiber Reinforcement: An Experimental Analysis. J. Build. Eng. 2024, 91, 109499. [Google Scholar] [CrossRef]
- Igbokwe, E.; Ibekwe, S.; Mensah, P.; Agu, O.; Li, G. Self-Healing of Macroscopic Cracks in Concrete by Cellulose Fiber Carried Microbes. J. Build. Eng. 2024, 90, 109383. [Google Scholar] [CrossRef]
- Shaheen, N.; Khushnood, R.A.; Khaliq, W.; Murtaza, H.; Iqbal, R.; Khan, M.H. Synthesis and Characterization of Bio-Immobilized Nano/Micro Inert and Reactive Additives for Feasibility Investigation in Self-Healing Concrete. Constr. Build. Mater. 2019, 226, 492–506. [Google Scholar] [CrossRef]
- Xu, H.; Lian, J.; Gao, M.; Fu, D.; Yan, Y. Self-Healing Concrete Using Rubber Particles to Immobilize Bacterial Spores. Materials 2019, 12, 2313. [Google Scholar] [CrossRef]
- Lea, F.M.; Hewlett, P.C.; Liska, M. Lea’s Chemistry of Cement and Concrete, 5th ed.; Butterworth-Heinemann: Oxford, UK; Cambridge, MA, USA, 2019; ISBN 978-0-08-100773-0. [Google Scholar]
- Bundur, Z.B.; Amiri, A.; Ersan, Y.C.; Boon, N.; De Belie, N. Impact of Air Entraining Admixtures on Biogenic Calcium Carbonate Precipitation and Bacterial Viability. Cem. Concr. Res. 2017, 98, 44–49. [Google Scholar] [CrossRef]
- ASTM C150/C150M-22; Standard Specification for Portland Cement. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- Muller, V.; Pacheco, F.; Carvalho, C.M.; Fernandes, F.; Valiati, V.H.; Modolo, R.C.E.; Ehrenbring, H.Z.; Tutikian, B.F. Analysis of Cementitious Matrices Self-Healing with Bacillus Bacteria. Rev. IBRACON Estrut. Mater. 2022, 15, e15404. [Google Scholar] [CrossRef]
- Schwantes-Cezario, N.; Nogueira, G.S.F.; Toralles, B.M. Biocimentação de Compósitos Cimentícios Mediante Adição de Esporos de B. Subtilis AP91. REC 2017, 4, 142. [Google Scholar] [CrossRef]
- NBR16887 DE 12/2020; Concrete—Determination of Air Content in Fresh Concrete—Pressometric Method. Brazilian National Standards Organization: Rio de Janeiro, Brazil, 2020.
- Algaifi, H.A.; Bakar, S.A.; Sam, A.R.M.; Ismail, M.; Abidin, A.R.Z.; Shahir, S.; Altowayti, W.A.H. Insight into the Role of Microbial Calcium Carbonate and the Factors Involved in Self-Healing Concrete. Constr. Build. Mater. 2020, 254, 119258. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Feng, T.; Zhou, M.; Zhao, L.; Zhou, A.; Li, Z. Immobilizing Bacteria in Expanded Perlite for the Crack Self-Healing in Concrete. Constr. Build. Mater. 2017, 148, 610–617. [Google Scholar] [CrossRef]
- Andalib, R.; Abd Majid, M.Z.; Hussin, M.W.; Ponraj, M.; Keyvanfar, A.; Mirza, J.; Lee, H.-S. Optimum Concentration of Bacillus Megaterium for Strengthening Structural Concrete. Constr. Build. Mater. 2016, 118, 180–193. [Google Scholar] [CrossRef]
- Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Buckley, D.H.; Stahl, D.A. Microbiologia de Brock, 14th ed. Grupo A Educação S.A.: Porto Alegre, Brazil, 2016.
- Reche, M.H.L.R.; Reali, C.; Pittol, M.; De Athayde Saul, D.; Macedo, V.R.M.; Valiati, V.H.; Machado, V.; Fiuza, L.M. Diversity of Culturable Gram-Negative Bacteria Isolated from Irrigation Water of Two Rice Crop Regions in Southern Brazil. Environ. Monit. Assess. 2016, 188, 359. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Hall, T.A. Bioedit: A User Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acid Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- NBR 7215; Portland Cement—Determination of Compressive Strength. Brazilian National Standards Organization: Rio de Janeiro, Brazil, 2019.
- NBR 13279; Mortar for Laying and Coating of Walls and Ceilings—Determination of Tensile Strength in Bending and Compression. Brazilian National Standards Organization: Rio de Janeiro, Brazil, 2005.
- Wang, J.; Dewanckele, J.; Cnudde, V.; Van Vlierberghe, S.; Verstraete, W.; De Belie, N. X-Ray Computed Tomography Proof of Bacterial-Based Self-Healing in Concrete. Cem. Concr. Compos. 2014, 53, 289–304. [Google Scholar] [CrossRef]
- Pacheco, F. Análise Da Eficácia Dos Mecanismos de Autocicatrização Do Concreto. Ph.D. Thesis, University of Vale do Rio dos Sinos Campus, São Leopoldo, Brazil, 2020. [Google Scholar]
- Tziviloglou, E.; Wiktor, V.; Jonkers, H.M.; Schlangen, E. Bacteria-Based Self-Healing Concrete to Increase Liquid Tightness of Cracks. Constr. Build. Mater. 2016, 122, 118–125. [Google Scholar] [CrossRef]
- Jenson, I. Bacillus: Introduction. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1, pp. 111–117. [Google Scholar]
- Ehrenbring, H.Z. Desenvolvimento de Engineered Cementitious Composites (ECC) Autocicatrizantes Com Diferentes Fibras Poliméricas e Agentes de Cicatrização. Ph.D. Thesis, University of Vale do Rio dos Sinos Campus, São Leopoldo, Brazil, 2020. [Google Scholar]
- Khushnood, R.A.; Arif, A.; Shaheen, N.; Zafar, A.G.; Hassan, T.; Akif, M. Bio-Inspired Self-Healing and Self-Sensing Cementitious Mortar Using Bacillus Subtilis Immobilized on Graphitic Platelets. Constr. Build. Mater. 2022, 316, 125818. [Google Scholar] [CrossRef]
- Qian, C.; Rui, Y.; Wang, C.; Wang, X.; Xue, B.; Yi, H. Bio-Mineralization Induced by Bacillus Mucilaginosus in Crack Mouth and Pore Solution of Cement-Based Materials. Mater. Sci. Eng. C 2021, 126, 112120. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Koren, K.; Löbmann, K.; Hinge, M.; Scoma, A.; Kjeldsen, K.U.; Røy, H. Constraints on CaCO3 Precipitation in Superabsorbent Polymer by Aerobic Bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Iglewski, B.H. Pseudomonas. In Medical Microbiology; University of Texas Medical Branch: Galveston, TX, USA, 1997. [Google Scholar]
- Dodd, C.E.R. Pseudomonas: Introduction. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3, pp. 244–247. [Google Scholar]
- Erşan, Y.Ç.; Hernandez-Sanabria, E.; Boon, N.; De Belie, N. Enhanced Crack Closure Performance of Microbial Mortar through Nitrate Reduction. Cem. Concr. Compos. 2016, 70, 159–170. [Google Scholar] [CrossRef]
- Ramachadran, S.K.; Ramakrishnan, V.; Bang, S.S. Remediation of Concrete Using Microorganisms. Mater. J. 2001, 98, 3–9. [Google Scholar] [CrossRef]
- Olstein, A.; Griffith, L.; Feirtag, J.; Pearson, N. Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) for Detection of Salmonella on Selected Environmental Surfaces. J. AOAC INT. 2013, 96, 404–412. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Pandey, A.; Joshi, V.K.; Nigam, P.S.; Soccol, C.R. Enterobacteriaceae, Coliforms and E. coli—Introduction. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 659–666. ISBN 978-0-12-384733-1. [Google Scholar]
- Koutsoumanis, K.P.; Lianou, A.; Sofos, J.N. Food Safety: Emerging Pathogens. In Encyclopedia of Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3, pp. 250–272. [Google Scholar]
- Zamani, M.; Nikafshar, S.; Mousa, A.; Behnia, A. Bacteria Encapsulation Using Synthesized Polyurea for Self-Healing of Cement Paste. Constr. Build. Mater. 2020, 249, 118556. [Google Scholar] [CrossRef]
- Bentz, D.P.; Ardani, A.; Barrett, T.; Jones, S.Z.; Lootens, D.; Peltz, M.A.; Sato, T.; Stutzman, P.E.; Tanesi, J.; Weiss, W.J. Multi-Scale Investigation of the Performance of Limestone in Concrete. Constr. Build. Mater. 2015, 75, 1–10. [Google Scholar] [CrossRef]
- Chichón-Payá, S.; Oliveira, I.; Aguado, A.; Chinchón-Yepes, S. The Sulfate Attack in Concrete by Degradation of Iron Sulfides and the Effect of the Host Rock. In Proceedings of the II DBMC International Conference on Durability of Building Materials and Components, Porto, Portugal, 12 April 2011. [Google Scholar]
- Wang, J.; Mignon, A.; Trenson, G.; Van Vlierberghe, S.; Boon, N.; De Belie, N. A Chitosan Based pH-Responsive Hydrogel for Encapsulation of Bacteria for Self-Sealing Concrete. Cem. Concr. Compos. 2018, 93, 309–322. [Google Scholar] [CrossRef]
- Borštnar, M.; Daneu, N.; Dolenec, S. Phase Development and Hydration Kinetics of Belite-Calcium Sulfoaluminate Cements at Different Curing Temperatures. Ceram. Int. 2020, 46, 29421–29428. [Google Scholar] [CrossRef]
- Kunal; Siddique, R.; Rajor, A.; Singh, M. Influence of Bacterial-Treated Cement Kiln Dust on Strength and Permeability of Concrete. J. Mater. Civ. Eng. 2016, 28, 04016088. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Wang, B. Biochemical Process of Ureolysis-Based Microbial CaCO3 Precipitation and Its Application in Self-Healing Concrete. Appl. Microbiol. Biotechnol. 2018, 102, 3121–3132. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, Q.; Hu, X.; Wu, M.; Zhao, Y.; Feng, Y.; Shen, D. Application of Zeolite as a Bacterial Carrier in the Self-Healing of Cement Mortar Cracks. Constr. Build. Mater. 2022, 331, 127324. [Google Scholar] [CrossRef]
- Qian, C.; Ren, L.; Xue, B.; Cao, T. Bio-Mineralization on Cement-Based Materials Consuming CO2 from Atmosphere. Constr. Build. Mater. 2016, 106, 126–132. [Google Scholar] [CrossRef]
- Siddique, R.; Nanda, V.; Kunal; Kadri, E.-H.; Iqbal Khan, M.; Singh, M.; Rajor, A. Influence of Bacteria on Compressive Strength and Permeation Properties of Concrete Made with Cement Baghouse Filter Dust. Constr. Build. Mater. 2016, 106, 461–469. [Google Scholar] [CrossRef]
- Siddique, R.; Singh, K.; Kunal; Singh, M.; Corinaldesi, V.; Rajor, A. Properties of Bacterial Rice Husk Ash Concrete. Constr. Build. Mater. 2016, 121, 112–119. [Google Scholar] [CrossRef]
- Siddique, R.; Jameel, A.; Singh, M.; Barnat-Hunek, D.; Kunal; Aït-Mokhtar, A.; Belarbi, R.; Rajor, A. Effect of Bacteria on Strength, Permeation Characteristics and Micro-Structure of Silica Fume Concrete. Constr. Build. Mater. 2017, 142, 92–100. [Google Scholar] [CrossRef]
- Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K. Influence of Limestone on the Hydration of Portland Cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Jang, I.; Son, D.; Kim, W.; Park, W.; Yi, C. Effects of Spray-Dried Co-Cultured Bacteria on Cement Mortar. Constr. Build. Mater. 2020, 243, 118206. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C. Influences of Bacteria-Based Self-Healing Agents on Cementitious Materials Hydration Kinetics and Compressive Strength. Constr. Build. Mater. 2016, 121, 659–663. [Google Scholar] [CrossRef]
Material | Property | |||
---|---|---|---|---|
Sand | Dry specific mass | 2.56 g/cm3 | ||
Maximum characteristic size | 4.75 mm | |||
Fineness modulus | 3.49 | |||
Cement | Blaine specific surface | 4400 cm2/g | ||
Fineness (#200) | 0.08% | |||
Fineness (#325) | 0.40% | |||
Setting time | Initial | 160 min | ||
Final | 210 min | |||
Water content for normal consistency paste | 29.1% | |||
Mechanical compressive strength | 1 day | 26.3 MPa | ||
3 days | 39.4 MPa | |||
7 days | 45.7 MPa | |||
28 days | 53.4 MPa |
Compound | Mass Fraction (%) |
---|---|
Al2O3 | 4.44 |
SiO2 | 18.52 |
Fe2O3 | 3.14 |
CaO | 61.05 |
MgO | 3.64 |
SO3 | 2.85 |
Loss on ignition (LOI) | 3.19 |
Free CaO | 1.99 |
Insoluble residue | 1.01 |
Equivalent alkali content | 0.62 |
Cement | Sand | Water 1/Cement (w/c) | Air-Entraining Admixture (with Respect to Mass of Cement) | Entrained Air Content 2 | Cement Consumption |
---|---|---|---|---|---|
1.0 | 1.0 | 0.4 | 0.35 | 18% | 709.9 kg/m3 |
Shape | Dimensions | Number of Test Bodies per Bacteria | Analysis Conducted on Test Body |
---|---|---|---|
Prismatic 1 | 4 cm × 4 cm × 16 cm | 3 | Visual analysis of self-healing and X-ray diffraction (XRD) |
Cylindrical 2 | 5 cm × 10 cm | 1 | Scanning electron microscopy (SEM) |
Cylindrical 2 | 5 cm × 10 cm | 6 | Compressive strength |
Bacteria | Soil | Phylum | Class | Order | Family | Genus |
---|---|---|---|---|---|---|
IB1 | A-II | Proteocteria | Gammaproteocteria | Enterobacterales | Enterobacteriaceae | Cronobacter |
IB2 | A-V | Proteocteria | Gammaproteocteria | Enterobacterales | Enterobacteriaceae | Cronobacter |
IB3 | B-I | Firmicutes | Bacilli | Bacillales | Bacillaceae | Bacillus |
IB4 | B-II | Proteocteria | Gammaproteocteria | Enterobacterales | Enterobacteriaceae | Citrobacter |
IB5 | B-IV | Proteocteria | Gammaproteocteria | Pseudomonadales | Pseudomonadaceae | Pseudomonas |
Sample | Soil 1 | Genus | Increase in Compressive Strength (%) | Visual Analysis 2 | SEM and XRD | ||
---|---|---|---|---|---|---|---|
7 Days | 28 Days | ||||||
With Respect to Reference | With Respire to Reference | With Respect to 7 Days | |||||
IB1 | A-II | Cronobacter | +87 | +10 | 0 | No healing observed | Calcite and ettringite in entrained air pores |
IB2 | A-V | Cronobacter | +147 | +108 | +42 | Crystal formation along the crack at 7 days, growth up to 14 days and reduction at 28 days | Calcite and C-S-H |
IB3 | B-I | Bacillus | +59 | +20 | +27 | Crystal formation along the crack at 14 days and growth up to 28 days | Calcite and C-S-H |
IB4 | B-II | Citrobacter | +72 | +28 | +26 | Crystal formation along the crack at 14 days | Calcite |
IB5 | B-IV | Pseudomonas | +57 | +21 | +31 | Crystal formation along the crack at 14 days and growth up to 28 days | Calcite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muller, V.; Kramer, H.d.S.; Pacheco, F.; Ehrenring, H.Z.; Christ, R.; Valiati, V.; Modolo, R.C.E.; Fonseca Tutikian, B. Survey of Indigenous Bacteria as a Simplified Alternative to Produce Self-Healing Cementitious Matrices. Coatings 2025, 15, 152. https://doi.org/10.3390/coatings15020152
Muller V, Kramer HdS, Pacheco F, Ehrenring HZ, Christ R, Valiati V, Modolo RCE, Fonseca Tutikian B. Survey of Indigenous Bacteria as a Simplified Alternative to Produce Self-Healing Cementitious Matrices. Coatings. 2025; 15(2):152. https://doi.org/10.3390/coatings15020152
Chicago/Turabian StyleMuller, Vinicius, Henrique dos Santos Kramer, Fernanda Pacheco, Hinoel Zamis Ehrenring, Roberto Christ, Victor Valiati, Regina Célia Espinosa Modolo, and Bernardo Fonseca Tutikian. 2025. "Survey of Indigenous Bacteria as a Simplified Alternative to Produce Self-Healing Cementitious Matrices" Coatings 15, no. 2: 152. https://doi.org/10.3390/coatings15020152
APA StyleMuller, V., Kramer, H. d. S., Pacheco, F., Ehrenring, H. Z., Christ, R., Valiati, V., Modolo, R. C. E., & Fonseca Tutikian, B. (2025). Survey of Indigenous Bacteria as a Simplified Alternative to Produce Self-Healing Cementitious Matrices. Coatings, 15(2), 152. https://doi.org/10.3390/coatings15020152