Surface-Anchored Zirconium Phosphate via Polydopamine Coating on Ion-Exchange Resin for Rapid, High-Capacity Cs+ Capture
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagent
2.2. Sample Preparation
2.3. Surface Features
2.4. Batch Experiments
3. Results
3.1. Characterization Analysis
3.2. Performance Analysis
3.3. Mechanism Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eun, S.; Cho, E.; Ryu, J.; Kim, H.; Kim, M.; Kim, B.; Kim, S. Enhanced cesium adsorption and desorption mechanisms in ZnFe Prussian blue analogs: Structural transformation and reusability. Chem. Eng. J. 2025, 505, 159161. [Google Scholar] [CrossRef]
- Lujanienė, G.; Novikau, R.; Karalevičiūtė, K.; Pakštas, V.; Talaikis, M.; Levinskaitė, L.; Selskienė, A.; Selskis, A.; Mažeika, J.; Jokšas, K. Chitosan-minerals-based composites for adsorption of caesium, cobalt and europium. J. Hazard. Mater. 2024, 462, 132747. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, M.; Yang, Y.; Song, J.; Li, J.; Zhang, Q. Boosting cesium retention efficiency with polyoxometalate-ionic liquid composites: Insights into {WO6} octahedral affinity. J. Clean. Prod. 2024, 478, 143922. [Google Scholar] [CrossRef]
- Eun, S.; Kim, B.; Kim, M.; Ryu, J.; Han, Y.; Kim, S. Effect of incorporated transition metals on the adsorption mechanisms of radioactive cesium in Prussian blue analogs. Water Res. 2025, 268, 122700. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Lei, Y.; Xiao, J.; Tang, H.; Zhong, W.; Chen, M.; Wang, N.; Chen, Y.; Zhu, Y. MIL-125-NH2(Ti)/etched silicon carbide/carboxymethyl cellulose composite aerogel for efficient cesium adsorption under alkaline conditions. Sep. Purif. Technol. 2025, 378, 134745. [Google Scholar] [CrossRef]
- Lei, Z.; Li, X.; Huang, P.; Hu, H.; Li, Z.; Zhang, Q. Mechanochemical activation of antigorite to provide active magnesium for precipitating cesium from the existences of potassium and sodium. Appl. Clay Sci. 2019, 168, 223–229. [Google Scholar] [CrossRef]
- Xu, Z.; Rong, M.; Meng, Q.; Yao, H.; Ni, S.; Wang, L.; Xing, H.; Qu, H.; Yang, L.; Liu, H. Fabrication of hypercrosslinked hydroxyl-rich solid phase extractants for cesium separation from the salt lake brine. Chem. Eng. J. 2020, 400, 125991. [Google Scholar] [CrossRef]
- Kang, S.; Lee, B.; Ahn, K.; Im, S.; Kim, B.; Kim, T.; Hwang, Y.; Chae, S. Facile synthesis of copper-substituted Prussian blue analog immobilized ion exchange resins for high-performance ammonium recovery from wastewater: Adsorption kinetics, isotherms, and regeneration. Chem. Eng. J. 2023, 457, 141128. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Wang, J. Removal of Cs(Ⅰ) from simulated radioactive wastewater by three forward osmosis membranes. Chem. Eng. J. 2018, 344, 353–362. [Google Scholar] [CrossRef]
- Du, J.; Xiao, J.; Ma, X.; Li, J. Crown ether-functionalized polyimide nanofiber membranes fabricated by in-situ grafting and electrospinning for efficient selective adsorption of cesium. Desalination 2026, 618, 119445. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, Y.; Zhang, D.; Daniel, J.; Zhong, X.; Li, Z.; Tao, Q.; Xu, L. Crown-position recognition-driven selective adsorption: Efficient capture of strontium and cesium ions by dual crown ether-modified chitosan. Int. J. Biol. Macromol. 2025, 318, 144967. [Google Scholar] [CrossRef]
- Chen, S.; Dong, Y.; Wang, H.; Sun, J.; Wang, J.; Zhang, S.; Dong, H. Highly efficient and selective cesium recovery from natural brine resources using mesoporous Prussian blue analogs synthesized by ionic liquid-assisted strategy. Resour. Conserv. Recycl. 2022, 186, 106542. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Liu, B.; Gao, L.; Qiao, L.; Xiong, C.; Qiao, L.; Li, Y.; Zhang, P.; Zhu, D.; et al. Ecologically friendly 2D/2D Na+-MXene/LDH for cesium adsorption in salt lakes: A comprehensive study on adsorption performance, mechanisms, and environmental impact. Desalination 2025, 602, 118632. [Google Scholar] [CrossRef]
- Hamedelniel Suliman, M.; Nahid Siddiqui, M.; Basheer, C. Surface functionalization of mesoporous carbon for the enhanced removal of strontium and cesium radionuclides. Coatings 2020, 10, 923. [Google Scholar] [CrossRef]
- Deng, H.; Li, Y.; Huang, Y.; Ma, X.; Wu, L.; Cheng, T. An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution. Chem. Eng. J. 2016, 286, 25–35. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Shi, J.; Wang, M.; Guo, Y.; Li, M.; Duo, J.; Deng, T. Composite hydrogel particles encapsulated ammonium molybdophosphate for efficiently cesium selective removal and enrichment from wastewater. J. Hazard. Mater. 2019, 371, 694–704. [Google Scholar] [CrossRef]
- Tang, J.; Jin, J.; Li, W.; Zeng, X.; Ma, W.; Li, J.; Lv, T.; Peng, Y.; Feng, M.; Huang, X. Highly selective cesium(Ⅰ) capture under acidic conditions by a layered sulfide. Nat. Commun. 2022, 13, 658. [Google Scholar] [CrossRef] [PubMed]
- Manos, M.J.; Kanatzidis, M.G. Highly efficient and rapid Cs+ uptake by the layered metal sulfide k2xMnxsn3−xS6 (KMS-1). J. Am. Chem. Soc. 2009, 131, 6599–6607. [Google Scholar] [CrossRef]
- Tan, L.; Wang, S.; Du, W.; Hu, T. Effect of water chemistries on adsorption of Cs(Ⅰ) onto graphene oxide investigated by batch and modeling techniques. Chem. Eng. J. 2016, 292, 92–97. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Shao, K.; Zhang, G.; Lin, Y.; Chang, X.; Zhang, H.; Hu, P. Spongy porous cufe prussian blue deposited mxene nanosheets for quick removal of cesium ions from wastewater and seawater. Sep. Purif. Technol. 2023, 327, 124863. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Han, S.; Guo, Y.; Belzile, N.; Deng, T. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. Sep. Purif. Technol. 2020, 251, 117340. [Google Scholar] [CrossRef]
- Mu, W.; Yu, Q.; Chen, B.; Li, X.; Wei, H.; Yang, Y.; Peng, S. Effect of guest molecules on the adsorption properties of intercalated α-zrp for Sr2+ and Cs+. J. Mol. Liq. 2021, 323, 114585. [Google Scholar] [CrossRef]
- Wang, M.; Fu, M.; Li, J.; Niu, Y.; Zhang, Q.; Sun, Q. New insight into polystyrene ion exchange resin for efficient cesium sequestration: The synergistic role of confined zirconium phosphate nanocrystalline. Chin. Chem. Lett. 2024, 35, 108442. [Google Scholar] [CrossRef]
- Rethinasabapathy, M.; Hwang, S.; Choi, J.; Bhaskaran, G.; Huh, Y.S.; Choi, S.S. Efficient sequestration of cesium ions using phosphoric acid-modified activated carbon fibers from aqueous solutions. Chemosphere 2024, 364, 143051. [Google Scholar] [CrossRef] [PubMed]
- He, J.J.; Wang, W.; Sun, F.L.; Shi, W.X.; Qi, D.P.; Wang, K.; Shi, R.S.; Cui, F.Y.; Wang, C.; Chen, X.D. Highly Efficient Phosphate Scavenger Based on Well-Dispersed La(OH)3 Nanorods in Polyacrylonitrile Nanofibers for Nutrient-Starvation Antibacteria. ACS Nano 2015, 9, 9292–9302. [Google Scholar] [CrossRef]
- Shen, Y.; Posavec, L.; Bolisetty, S.; Hilty, F.M.; Nyström, G.; Kohlbrecher, J.; Hilbe, M.; Rossi, A.; Baumgartner, J.; Zimmermann, M.B.; et al. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nat. Nanotechnol. 2017, 12, 642. [Google Scholar] [CrossRef] [PubMed]
- Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314, 1107–1110. [Google Scholar] [CrossRef]
- Li, L.; Ye, F.; Lv, Q.; Xia, J.; Chen, N.; Wang, H.; Chen, L.; Zhao, K.; Zeng, Z.; Ahmad, M.; et al. Polydopamine-coated hollow carbon nitride as a full-spectral response photocatalyst for efficient H2O2 production via redox dual pathways. Appl. Catal. B Environ. Energy 2025, 363, 124802. [Google Scholar] [CrossRef]
- Wu, Q.; Xiao, B.; Li, Y.; Yao, R.; Jin, D.; Lei, Y.; Yang, D.; Zhu, J. Bioactive chitosan/polydopamine nanospheres coating on carbon fiber towards strengthening epoxy composites. Int. J. Biol. Macromol. 2024, 275, 133568. [Google Scholar] [CrossRef] [PubMed]
- Khalid, F.; Tabish, M.; Bora, K. Novel poly(vinyl alcohol) nanofiltration membrane modified with dopamine coated anatase TiO2 core shell nanoparticles. J. Water Process Eng. 2020, 37, 101486. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Q.; Phanlavong, P.; Li, Y.; Wang, Z.; Jiao, T.; Peng, Q. Highly efficient lead(II) sequestration using size-controllable polydopamine microspheres with superior application capability and rapid capture. ACS Sustain. Chem. Eng. 2017, 5, 4161–4170. [Google Scholar] [CrossRef]
- Li, Y.X.; Huang, L.; He, W.X.; Chen, Y.T.; Lou, B.Y. Preparation of functionalized magnetic Fe3O4@Au@polydopamine nanocomposites and their application for Copper(II) removal. Polymers 2018, 10, 570. [Google Scholar] [CrossRef]
- Ye, F.; Liu, Y.; Lv, Q.; Gao, B.; Xia, J.; Li, X.; Dou, M.; Zhao, K.; Ahmad, M.; Xiao, Z.; et al. Unveiling the mechanism of efficient detoxification by Pd species in chlorinated pollutant degradation. Chin. Chem. Lett. 2025, 37, 111136. [Google Scholar] [CrossRef]
- Tang, M.; Yang, T.S.; Zhang, Y. A brief review on α-zirconium phosphate intercalation compounds and nano-composites. Sci. China-Technol. Sci. 2016, 59, 436–441. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, Q.; Jiao, T.; Pan, B.; Zhang, Z.; Sun, Q.; Wang, S.; Wang, T.; Gao, F. Selective removal of phosphate in waters using a novel of cation adsorbent: Zirconium phosphate (ZrP) behavior and mechanism. Chem. Eng. J. 2013, 221, 315–321. [Google Scholar] [CrossRef]
- Sun, Q.N.; Yang, Y.J.; Zhao, Z.X.; Zhang, Q.R.; Zhao, X.M.; Nie, G.Z.; Jiao, T.F.; Peng, Q.M. Elaborate design of polymeric nanocomposites with Mg(II)-buffering nanochannels for highly efficient and selective removal of heavy metals from water: Case study for Cu(Ⅱ). Environ. Sci.-Nano 2018, 5, 2440–2451. [Google Scholar] [CrossRef]
- Ivanets, A.; Shashkova, I.; Kitikova, N.; Dzikaya, A.; Nekrasova, N.; Milyutin, V.; Baigenzhenov, O.; Zaruba-Venhlinskaya, K.; Radkevich, A. Composite metal phosphates for selective adsorption and immobilization of cesium, strontium, and cobalt radionuclides in ceramic matrices. J. Clean. Prod. 2022, 376, 134104. [Google Scholar] [CrossRef]
- Jabar, J.M.; Adebayo, M.A.; Taleat, T.A.A.; Yılmaz, M.; Rangabhashiyam, S. Ipoma batatas (sweet potato) leaf and leaf-based biochar as potential adsorbents for procion orange MX-2R removal from aqueous solution. J. Anal. Appl. Pyrolysis 2025, 185, 106876. [Google Scholar] [CrossRef]
- Mu, W.J.; Chen, B.H.; Yu, Q.H.; Li, X.L.; Wei, H.Y.; Yang, Y.C.; Peng, S.M. A novel zirconium phosphonate adsorbent for highly efficient radioactive cesium removal. J. Mol. Liq. 2021, 326, 115307. [Google Scholar] [CrossRef]
- Chen, S.; Sun, D.; Zou, L.; Huang, Y.; Cheng, F.; Shi, L.; Tasleem, A.; Ullah, A.; Sheraz Daood, S.; Yi, Q. Hydrothermal pre-anchoring and in-situ preparation of Prussian blue analogue-polymeric carbon nitride nanorods hybrid for robust and efficient cesium adsorption. Chem. Eng. J. 2024, 495, 153457. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, X.; Zhang, X.; Zhu, Y.; Guo, L.; Sun, J.; Mei, J.; Rong, J.; Li, Z. Preparation of a dual-template ion-imprinted membrane with polyacrylonitrile framework for selective adsorption and recovery of iodide (I−) and cesium (Cs+) from seawater. Sep. Purif. Technol. 2026, 382, 135797. [Google Scholar] [CrossRef]
- Jiao, R.; Si, Y.; Fan, W.; Sun, H.; Li, J.; Zhu, Z.; Li, A. Construction of hollow CMPs microspheres based on the kinetic quantum sieving effect for highly efficient adsorption of Iodide/Cesium ions. Sep. Purif. Technol. 2025, 353, 128561. [Google Scholar] [CrossRef]








| Models | DPZrP | DZrP | D001 |
|---|---|---|---|
| qe(exp) (mg/g) | 130.65 | 131.589 | 97.6 |
| Pseudo-first-order model | |||
| qe(cal) (mg/g) | 128.82 | 131.44 | 97.17 |
| k1 (min−1) | 0.034 | 0.022 | 0.035 |
| R2 | 0.981 | 0.997 | 0.994 |
| RMSE (mg/g) | 6.707 | 1.745 | 3.102 |
| Chi square (χ2) | 44.983 | 3.046 | 9.620 |
| Pseudo-second-order model | |||
| qe(cal) (mg/g) | 137.92 | 155.05 | 107.80 |
| k2 (g·mg−1·min−1) | 0.0004 | 0.0002 | 0.0004 |
| R2 | 0.959 | 0.996 | 0.988 |
| RMSE (mg/g) | 4.484 | 1.851 | 4.248 |
| Chi square (χ2) | 20.108 | 3.425 | 18.048 |
| Adsorbents | Capacity (mg/g) | Kinetics (min) | Ref. |
|---|---|---|---|
| DPZrP | 921.99 | 120 | This study |
| Crown ether-functionalized polyimide nanofiber membranes | 85.23 | 180 | [10] |
| ZnFe Prussian blue analogs | 621.11 | 120 | [1] |
| Prussian blue analogue-polymeric carbon nitride nanorods hybrid | 376.41 | 180 | [40] |
| Dual crown ether-modified chitosan | 172.11 | 540 | [11] |
| Dual-template ion-imprinted membrane with polyacrylonitrile framework | 20 | 200 | [41] |
| MIL-125-NH2(Ti)/etched silicon carbide/carboxymethyl cellulose composite aerogel | 366.43 | 60 | [5] |
| Prussian blue analogs | 381.71 | 120 | [4] |
| Hollow microspheres CMPs | 4.75 | 10 | [42] |
| Polyoxometalate-ionic liquid composites | 400.0 | 180 | [3] |
| Langmuir | Freundlich | Sips | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| T (K) | Qe (mg/g) | KL (L/mg) | R2 | Kf (mg/g) | n | R2 | Qe (mg/g) | Ks (Lns/mgns) | R2 | |
| DPZrP | 298 | 716.74 | 0.010 | 0.984 | 84.87 | 3.298 | 0.956 | 716.77 | −10.56 | 0.980 |
| 313 | 820.96 | 0.008 | 0.986 | 78.98 | 3.031 | 0.948 | 820.97 | −39.23 | 0.982 | |
| 333 | 921.99 | 0.009 | 0.994 | 90.46 | 3.019 | 0.950 | 922.00 | −63.13 | 0.993 | |
| D001 | 298 | 491.90 | 0.011 | 0.957 | 64.60 | 3.425 | 0.962 | 491.92 | −4.851 | 0.945 |
| 313 | 488.07 | 0.013 | 0.954 | 71.32 | 3.606 | 0.937 | 488.11 | −10.11 | 0.941 | |
| 333 | 496.54 | 0.011 | 0.964 | 65.04 | 3.427 | 0.956 | 496.57 | −5.261 | 0.954 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhao, X.; Xie, Y.; Yan, S.; Xiao, L.; Ding, K.; Cai, J.; Sun, Q. Surface-Anchored Zirconium Phosphate via Polydopamine Coating on Ion-Exchange Resin for Rapid, High-Capacity Cs+ Capture. Coatings 2025, 15, 1430. https://doi.org/10.3390/coatings15121430
Gao Y, Zhao X, Xie Y, Yan S, Xiao L, Ding K, Cai J, Sun Q. Surface-Anchored Zirconium Phosphate via Polydopamine Coating on Ion-Exchange Resin for Rapid, High-Capacity Cs+ Capture. Coatings. 2025; 15(12):1430. https://doi.org/10.3390/coatings15121430
Chicago/Turabian StyleGao, Yu, Xu Zhao, Yilin Xie, Shiyu Yan, Lichun Xiao, Kairong Ding, Jing Cai, and Qina Sun. 2025. "Surface-Anchored Zirconium Phosphate via Polydopamine Coating on Ion-Exchange Resin for Rapid, High-Capacity Cs+ Capture" Coatings 15, no. 12: 1430. https://doi.org/10.3390/coatings15121430
APA StyleGao, Y., Zhao, X., Xie, Y., Yan, S., Xiao, L., Ding, K., Cai, J., & Sun, Q. (2025). Surface-Anchored Zirconium Phosphate via Polydopamine Coating on Ion-Exchange Resin for Rapid, High-Capacity Cs+ Capture. Coatings, 15(12), 1430. https://doi.org/10.3390/coatings15121430

