Detonation Spraying of Functionally Graded Hydroxyapatite/Titanium Coatings on Ti–6Al–4V Alloy
Abstract
1. Introduction
2. Materials and Methods of Research
2.1. Characterization of Powders
2.2. Coating by Detonation Spraying
3. Coating Characterizations
4. Results and Discussion

5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deram, V.; Minichiello, C.; Vannier, R.-N.; Le Maguer, A.; Pawlowski, L.; Murano, D. Microstructural characterizations of plasma sprayed hydroxyapatite coatings. Surf. Coat. Technol. 2003, 166, 153–159. [Google Scholar] [CrossRef]
- Chen, L.; Komasa, S.; Hashimoto, Y.; Hontsu, S.; Okazaki, J. In vitro and in vivo osteogenic activity of titanium implants coated by pulsed laser deposition with a thin film of fluoridated hydroxyapatite. Int. J. Mol. Sci. 2018, 19, 1127. [Google Scholar] [CrossRef] [PubMed]
- Cizek, J.; Khor, K.A.; Prochazka, Z. Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Mater. Sci. Eng. C 2007, 27, 340–344. [Google Scholar] [CrossRef]
- Duan, Y.; Ma, W.; Li, D.; Wang, T.; Liu, B. Enhanced osseointegration of titanium implants in a rat model of osteoporosis using multilayer bone mesenchymal stem cell sheets. Exp. Ther. Med. 2017, 14, 5717–5726. [Google Scholar] [CrossRef]
- Mohseni, E.; Zalnezhad, E.; Bushroa, A.R. Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. Int. J. Adhes. Adhes. 2014, 48, 238–257. [Google Scholar] [CrossRef]
- Moore, B.; Asadi, E.; Lewis, G. Deposition methods for microstructured and nanostructured coatings on metallic bone implants: A review. Adv. Mater. Sci. Eng. 2017, 2017, 5812907. [Google Scholar] [CrossRef]
- Popova, A.A.; Yakovlev, V.I.; Legostaeva, E.V.; Sitnikov, A.A.; Sharkeev, Y.P. The effect of the granulometric composition of a hydroxyapatite powder on the structure and phase composition of coatings deposited by the detonation gas spraying technique. Russ. Phys. J. 2013, 55, 1284–1289. [Google Scholar] [CrossRef]
- Kweh, S.W.K.; Khor, K.A.; Cheang, P. High temperature in-situ XRD of plasma sprayed HA coatings. Biomaterials 2002, 23, 381–387. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Kumar, S. Coatings on orthopedic implants to overcome present problems and challenges: A focused review. Mater. Today Proc. 2021, 45, 5269–5276. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Sagdoldina, Z.; Kot, M.; Baizhan, D.; Buitkenov, D.; Sulyubayeva, L. Influence of Detonation Spraying Parameters on the Microstructure and Mechanical Properties of Hydroxyapatite Coatings. Materials 2024, 17, 5390. [Google Scholar] [CrossRef]
- Kowalski, S.; Gonciarz, W.; Belka, R.; Góral, A.; Chmiela, M.; Lechowicz, Ł.; Kaca, W.; Żórawski, W. Plasma-Sprayed Hydroxyapatite Coatings and Their Biological Properties. Coatings 2022, 12, 1317. [Google Scholar] [CrossRef]
- Zhao, G.; Xia, L.; Zhong, B.; Wen, G.; Song, L.; Wang, X. Effect of milling conditions on the properties of HA/Ti feedstock powders and plasma-sprayed coatings. Surf. Coat. Technol. 2014, 251, 38–47. [Google Scholar] [CrossRef]
- Jalali Bidakhavidi, M.; Omidvar, H.; Zamani, A.; Aghazadeh Mohandesi, J.; Jalali, H. Characterization, wear behavior and biocompatibility of HA/Ti composite and functionally graded coatings deposited on Ti−6Al−4V substrate by mechanical coating technique. Trans. Nonferrous Met. Soc. China 2024, 34, 547–559. [Google Scholar] [CrossRef]
- Gholamzadeh, M.; Karimi, F.; Gholamzadeh, N.; Sadrnezhaad, S.K.; Yousefi, H. The effect of heat treatment on the microstructure and mechanical properties of plasma-sprayed functionally graded hydroxyapatite/titanium coatings. Surf. Coat. Technol. 2025, 513, 132495. [Google Scholar] [CrossRef]
- Khor, K.A.; Gu, Y.W.; Quek, C.H.; Cheang, P. Plasma spraying of functionally graded hydroxyapatite/Ti–6Al–4V coatings. Surf. Coat. Technol. 2003, 168, 195–201. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Kaysser, W.A.; Rabin, B.H.; Kawasaki, A.; Ford, R.G. Functionally Graded Materials: Design, Processing, and Applications; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1999. [Google Scholar]
- Luginina, M.; Angioni, D.; Montinaro, S.; Orrù, R.; Cao, G.; Sergi, R.; Bellucci, D.; Cannillo, V. Hydroxyapatite/bioactive glass functionally graded materials (FGM) for bone tissue engineering. J. Eur. Ceram. Soc. 2020, 40, 4623–4634. [Google Scholar] [CrossRef]
- Lin, W.H.; Tsao, S.Y.; Cheng, T.C.; Shieh, J.; Yang, J.Y. Effect of morphologies of hydroxyapatite powders on thermal sprayed hydroxyapatite coatings. Surf. Interfaces 2025, 60, 105948. [Google Scholar] [CrossRef]
- Liu, D.-M.; Troczynski, T.; Tseng, W.J. Water-based sol–gel synthesis of hydroxyapatite: Process development. Biomaterials 2001, 22, 1721–1730. [Google Scholar] [CrossRef]
- Qaid, T.H.; Ramesh, S.; Yusof, F.; Basirun, W.J.; Ching, Y.C.; Chandran, H.; Ramesh, S.; Krishnasamy, S. Micro-arc oxidation of bioceramic coatings containing eggshell-derived hydroxyapatite on titanium substrate. Ceram. Int. 2019, 45, 18371–18381. [Google Scholar] [CrossRef]
- Tsui, Y.C.; Doyle, C.; Clyne, T.W. Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels. Biomaterials 1998, 19, 2015–2029. [Google Scholar] [CrossRef]
- Mardali, M.; SalimiJazi, H.R.; Karimzadeh, F.; Luthringer, B.; Blawert, C.; Labbaf, S. Comparative study on microstructure and corrosion behavior of nanostructured hydroxyapatite coatings deposited by high velocity oxygen fuel and flame spraying on AZ61 magnesium based substrates. Appl. Surf. Sci. 2019, 465, 614–624. [Google Scholar] [CrossRef]
- Henao, J.; Giraldo-Betancur, A.L.; Poblano-Salas, C.A.; Forero-Sossa, P.A.; Espinosa-Arbelaez, D.G.; Gonzalez, J.V.; Corona-Castuera, J. On the deposition of cold-sprayed hydroxyapatite coatings. Surf. Coat. Technol. 2024, 476, 130289. [Google Scholar] [CrossRef]
- Levingstone, T.J.; Ardhaoui, M.; Benyounis, K.; Looney, L.; Stokes, J.T. Plasma sprayed hydroxyapatite coatings: Understanding process relationships using design of experiment analysis. Surf. Coat. Technol. 2015, 283, 29–36. [Google Scholar] [CrossRef]
- Ji, H.; Marquis, P.M. Effect of heat treatment on the microstructure of plasma-sprayed hydroxyapatite coating. Biomaterials 1993, 14, 64–68. [Google Scholar] [CrossRef]
- Gledhill, H.; Turner, I.G.; Doyle, C. In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings. Biomaterials 2001, 22, 1233–1240. [Google Scholar] [CrossRef]
- Klyui, N.I.; Chornyi, V.S.; Zatovsky, I.V.; Tsabiy, L.I.; Buryanov, A.A.; Protsenko, V.V.; Gryshkov, O. Properties of gas detonation ceramic coatings and their effect on the osseointegration of titanium implants for bone defect replacement. Ceram. Int. 2021, 47, 25425–25439. [Google Scholar] [CrossRef]
- Baizhan, D.; Sagdoldina, Z.; Buitkenov, D.; Kambarov, Y.; Nabioldina, A.; Zhumabekova, V.; Bektasova, G. Study of the Structural-Phase State of Hydroxyapatite Coatings Obtained by Detonation Spraying at Different O2/C2H2 Ratios. Crystals 2023, 13, 1564. [Google Scholar] [CrossRef]
- Kengesbekov, A.; Sagdoldina, Z.; Torebek, K.; Baizhan, D.; Kambarov, Y.; Yermolenko, M.; Abdulina, S.; Maulet, M. Synthesis and Formation Mechanism of Metal Oxide Compounds. Coatings 2022, 12, 1511. [Google Scholar] [CrossRef]
- Khvostov, M.V.; Bulina, N.V.; Zhukova, N.A.; Morenkova, E.G.; Rybin, D.K.; Makarova, S.V.; Leonov, S.V.; Gorodov, V.S.; Ulianitsky, V.Y.; Tolstikova, T.G. A study on biological properties of titanium implants coated with multisubstituted hydroxyapatite. Ceram. Int. 2022, 48, 34780–34792. [Google Scholar] [CrossRef]
- ASTM C633-13; Standard Test Method for Adhesive Strength of Thermal Spray Coatings. ASTM International: West Conshohocken, PA, USA, 2013.
- Gao, C.; Wang, Z.; Jiao, Z.; Wu, Z.; Guo, M.; Wang, Y.; Liu, J.; Zhang, P. Enhancing antibacterial capability and osseointegration of polyetheretherketone (PEEK) implants by dual-functional surface modification. Mater. Des. 2021, 205, 109733. [Google Scholar] [CrossRef]
- Kakimzhanov, D.; Rakhadilov, B.; Sulyubayeva, L.; Dautbekov, M. Influence of Pulse-Plasma Treatment Distance on Structure and Properties of Cr3C2-NiCr-Based Detonation Coatings. Coatings 2023, 13, 1824. [Google Scholar] [CrossRef]
- Rodrigues, L.F., Jr.; Tronco, M.C.; Escobar, C.F.; Rocha, A.S.; Santos, L.A.L. Painting method for hydroxyapatite coating on titanium substrate. Ceram. Int. 2019, 45, 14806–14815. [Google Scholar] [CrossRef]
- ISO 13779-2:2018; Implants for Surgery—Hydroxyapatite—Part 2: Thermally Sprayed Coatings of Hydroxyapatite. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.







| Layer | Material | Regime No. 1 | Regime No. 2 | ||
|---|---|---|---|---|---|
| Ti Cycles | HAp Cycles | Ti Cycles | HAp Cycles | ||
| 1 | Ti/HAp | 8 | 4 | 6 | 2 |
| 2 | HAp/Ti | 4 | 4 | 4 | 2 |
| 3 | Ti/HAp | 2 | 4 | 4 | 2 |
| 4 | HAp/Ti | 2 | 4 | 2 | 2 |
| 5 | Ti/HAp | 2 | 4 | 2 | 2 |
| 6 | HAp/Ti | 2 | 8 | 2 | 4 |
| 7 | Ti/HAp | 2 | 12 | 2 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kengesbekov, A.; Baizhan, D.; Buitkenov, D.; Muktanova, N. Detonation Spraying of Functionally Graded Hydroxyapatite/Titanium Coatings on Ti–6Al–4V Alloy. Coatings 2025, 15, 1418. https://doi.org/10.3390/coatings15121418
Kengesbekov A, Baizhan D, Buitkenov D, Muktanova N. Detonation Spraying of Functionally Graded Hydroxyapatite/Titanium Coatings on Ti–6Al–4V Alloy. Coatings. 2025; 15(12):1418. https://doi.org/10.3390/coatings15121418
Chicago/Turabian StyleKengesbekov, Aidar, Daryn Baizhan, Dastan Buitkenov, and Nazerke Muktanova. 2025. "Detonation Spraying of Functionally Graded Hydroxyapatite/Titanium Coatings on Ti–6Al–4V Alloy" Coatings 15, no. 12: 1418. https://doi.org/10.3390/coatings15121418
APA StyleKengesbekov, A., Baizhan, D., Buitkenov, D., & Muktanova, N. (2025). Detonation Spraying of Functionally Graded Hydroxyapatite/Titanium Coatings on Ti–6Al–4V Alloy. Coatings, 15(12), 1418. https://doi.org/10.3390/coatings15121418

