Investigation on Corrosion Behaviour of Metallic Materials
Author Contributions
Funding
Conflicts of Interest
References
- Verma, C.; Ebenso, E.E.; Quraishi, M.A.; Hussain, C.M. Recent Developments in Sustainable Corrosion Inhibitors: Design, Performance and Industrial-Scale Applications. Mater. Adv. 2021, 2, 3806–3850. [Google Scholar] [CrossRef]
- Ali Khan, M.A.; Irfan, O.M.; Djavanroodi, F.; Asad, M. Development of Sustainable Inhibitors for Corrosion Control. Sustainability 2022, 14, 9502. [Google Scholar] [CrossRef]
- de Souza Morais, W.R.; da Silva, J.S.; Queiroz, N.M.P.; de Paiva e Silva Zanta, C.L.; Ribeiro, A.S.; Tonholo, J. Green Corrosion Inhibitors Based on Plant Extracts for Metals and Alloys in Corrosive Environments: A Technological and Scientific Prospection. Appl. Sci. 2023, 13, 7482. [Google Scholar] [CrossRef]
- Nwigwe, U.S.; Nwoye, C.I. Green Corrosion Inhibitors for Steel and Other Metals in Basic Media: A mini-review. Res. Eng. Struct. Mater. 2023, 9, 775–789. [Google Scholar] [CrossRef]
- Casanova, L.; Ceriani, F.; Messinese, E.; Paterlini, L.; Beretta, S.; Bolzoni, F.M.; Brenna, A.; Diamanti, M.V.; Ormellese, M.; Pedeferri, M. Recent Advances in the Use of Green Corrosion Inhibitors to Prevent Chloride-Induced Corrosion in Reinforced Concrete. Materials 2023, 16, 7462. [Google Scholar] [CrossRef]
- Răut, D.I.G.; Matei, E.; Avramescu, S.M. Recent Development of Corrosion Inhibitors: Types, Mechanisms, Electrochemical Behaviour, Efficiency, and Environmental Impact. Technologies 2025, 13, 103. [Google Scholar] [CrossRef]
- Lavanya, M.; Machado, A.A. Surfactants as Biodegradable Sustainable Inhibitors for Corrosion Control in Diverse Media and Conditions: A Comprehensive Review. Sci. Total Environ. 2024, 908, 168407. [Google Scholar] [CrossRef]
- Bandeira, R.M.; Lima, F.P.; Nunes, M.S.; dos Santos, E.C.; Santos Júnior, J.R.; de Matos, J.M.E.; Feitosa, C.M.; Rai, M.; Bhattarai, S.; Mulmi, D.D. The Green Plant-Based Corrosion Inhibitors—A Sustainable Strategy for Corrosion Protection. Surf. Sci. Technol. 2025, 3, 19. [Google Scholar] [CrossRef]
- Galleguillos Madrid, F.M.; Soliz, A.; Cáceres, L.; Bergendahl, M.; Leiva-Guajardo, S.; Portillo, C.; Olivares, O.; Toro, N.; Jimenez-Arevalo, V.; Páez, M. Green Corrosion Inhibitors for Metal and Alloys Protection in Contact with Aqueous Saline. Materials 2024, 17, 3996. [Google Scholar] [CrossRef]
- Bender, R.; Féron, F.; Mills, D.; Ritter, S.; Bäßler, R.; Bettge, D.; De Graeve, I.; Dugstad, A.; Grassini, S.; Hack, T.; et al. Corrosion Challenges Towards a Sustainable Society. Mater. Corros. 2022, 73, 730–1751. [Google Scholar] [CrossRef]
- Verma, C.; Chauhan, D.S.; Aslam, R.; Banerjee, P.; Aslam, J.; Quadri, T.W.; Zehra, S.; Verma, D.K.; Quraishi, M.A.; Dubey, S.; et al. Principles and Theories of Green Chemistry for Corrosion Science and Engineering: Design and Application. Green Chem. 2024, 26, 4270–4357. [Google Scholar] [CrossRef]
- Hossain, N.; Asaduzzaman Chowdhury, M.; Kchaou, M. An Overview of Green Corrosion Inhibitors for Sustainable and Environment Friendly Industrial Development. J. Adhes. Sci. Technol. 2021, 35, 673–690. [Google Scholar] [CrossRef]
- Baitule, P.; Manivannan, R. Corrosion Protection in Acidic Medium for Mild Steel Using Various Plants Extract as Green Corrosion Inhibitor—A Review. Key Eng. Mater. 2021, 882, 50–63. [Google Scholar] [CrossRef]
- Aguilar-Ruiz, A.A.; Dévora-Isiordia, G.E.; Sánchez-Duarte, R.G.; Villegas-Peralta, Y.; Orozco-Carmona, V.M.; Álvarez-Sánchez, J. Chitosan-based sustainable coatings for corrosion inhibition of aluminum in seawater. Coatings 2023, 13, 1615. [Google Scholar] [CrossRef]
- Kohl, M.; Alafid, F.; Bouška, M.; Krejčová, A.; Raycha, Y.; Kalendová, A.; Hrdina, R.; Burgert, L. New corrosion inhibitors based on perylene units in epoxy ester resin coatings. Coatings 2022, 12, 923. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, F.; Wang, F.; Liu, L. Dual-action epoxy coating with anti-corrosion and antibacterial properties based on well-dispersed ZnO/basalt composite. Compos. Commun. 2023, 42, 101674. [Google Scholar] [CrossRef]
- Muresan, L.M. Nanocomposite Coatings for Anti-Corrosion Properties of Metallic Substrates. Materials 2023, 16, 5092. [Google Scholar] [CrossRef]
- Mercan, D.-A.; Tudorache, D.-I.; Niculescu, A.-G.; Mogoantă, L.; Mogoşanu, G.D.; Bîrcă, A.C.; Vasile, B.Ș.; Hudiță, A.; Voinea, I.C.; Stan, M.S.; et al. Characterization of Nanoparticles in Antimicrobial Coatings. Nanomaterials 2025, 15, 637. [Google Scholar] [CrossRef]
- Ebenezer, P.; Kumara, S.P.S.N.; Senevirathne, S.W.M.A.; Bray, L.J.; Wangchuk, P.; Mathew, A.; Yarlagadda, P.K. Advancements in Antimicrobial Surface Coatings Using Metal/Metaloxide Nanoparticles, Antibiotics, and Phytochemicals. Nanomaterials 2025, 15, 1023. [Google Scholar] [CrossRef]
- Selim, M.S.; El-hoshoudy, A.N.; Zaki, E.G.; EL-Saeed, A.M.; Farag, A.A. Durable graphene-based alkyd nanocomposites for surface coating applications. Environ. Sci. Pollut. Res. 2024, 31, 43476–43491. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Nguyen, T.A.; Carriere, P.; Xuan, C.N. Nanocomposite Coatings: Preparation, Characterisation, Properties, and Applications. Int. J. Corros. 2018, 4749501. [Google Scholar] [CrossRef]
- Jiang, C.; Caod, Y.; Xiaoabc, G.; Zhuabc, R.; Lu, L. A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates. RSC Adv. 2017, 7, 7531–7539. [Google Scholar] [CrossRef]
- Žbulj, K.; Bilić, G.; Simon, K.; Hrnčavić, L. Lady’s Mantle Flower as a Biodegradable Plant-Based Corrosion Inhibitor for CO2 Carbon Steel Corrosion. Coatings 2024, 14, 671. [Google Scholar] [CrossRef]
- Wang, X.; Fan, C.; Sun, L.; Shang, H.; Zhang, D.; Xu, N.; Wang, B.; Xu, J. Performance of a Composite Inhibitor on Mild Steel in NaCl Solution: Imidazoline, Sodium Molybdate, and Sodium Dodecylbenzenesulfonate. Coatings 2024, 14, 652. [Google Scholar] [CrossRef]
- Yan, H.; Cheng, F.; Si, L.; Yang, Y.; Dou, Z.; Liu, F. Effect of Co Contents on Microstructure and Cavitation Erosion Resistance of NiTiAlCrCoxN Films. Coatings 2024, 14, 603. [Google Scholar] [CrossRef]
- Deng, P.; Shangguan, J.; Hu, J.; Huang, H.; Zhou, L. Anticorrosion Method Combining Impressed Current Cathodic Protection and Coatings in Marine Atmospheric Environment. Coatings 2024, 14, 524. [Google Scholar] [CrossRef]
- Stojanović, I.; Škrlec, B.; Kurtela, M.; Alar, V.; Odeljan, M. Physical and Chemical Properties of High-Temperature Silicone-Based Polymer Coatings Applied on Different Surface Roughnesses. Coatings 2023, 13, 2100. [Google Scholar] [CrossRef]
- Landek, D.; Kurtela, M.; Stojanović, I.; Jačan, J.; Jakovljević, J. Corrosion and Micro-Abrasion Properties of an AISI 316L Austenitic Stainless Steel after Low-Temperature Plasma Nitriding. Coatings 2023, 13, 1854. [Google Scholar] [CrossRef]
- Li, X.; Gao, K.; Zhao, Y.; Xie, X.; Lü, X.; Zhang, C.; Ai, H. Wear Resistance Study of Bionic Pitted Ni Cladding Layer on 7075 Aluminium Alloy Drill Pipe Surface. Coatings 2023, 13, 1768. [Google Scholar] [CrossRef]
- Stojanović, I.; Logar, M.; Fatović, I.; Alar, V.; Ristevski, D.R. Experimental Study of Atmospherically and Infrared-Dried Industrial Topcoats. Coatings 2023, 13, 1343. [Google Scholar] [CrossRef]
- Samardžija, M.; Stojanović, I.; Vuković Domanovac, M.; Alar, V. Epoxy Coating Modification with Metal Nanoparticles to Improve the Anticorrosion, Migration, and Antibacterial Properties. Coatings 2023, 13, 1201. [Google Scholar] [CrossRef]
- Samardžija, M.; Kurtela, M.; Vuković Domanovac, M.; Alar, M. Anticorrosion and Antibacterial Properties of Al NP–Epoxy Nanocomposite Coating on Grey Cast Iron. Coatings 2023, 13, 898. [Google Scholar] [CrossRef]
- Yan, W.; Ma, Z.; Wang, Z.; Zhang, J.; Li, K.; Wen, L.; Li, C.; Jiang, X.; Xu, Z. Localized Corrosion Mechanism of Q125 Casing Steel in Residual Acid Solution during Oil Reservoir Acidizing. Coatings 2023, 13, 710. [Google Scholar] [CrossRef]
- Yang, C.; Chen, P.; Wu, W.; Sheng, L.; Zheng, Y.; Chu, P.K. A Review of Corrosion-Resistant PEO Coating on Mg Alloy. Coatings 2024, 14, 451. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Runje, B.; Kurtela, M. Investigation on Corrosion Behaviour of Metallic Materials. Coatings 2025, 15, 1403. https://doi.org/10.3390/coatings15121403
Runje B, Kurtela M. Investigation on Corrosion Behaviour of Metallic Materials. Coatings. 2025; 15(12):1403. https://doi.org/10.3390/coatings15121403
Chicago/Turabian StyleRunje, Biserka, and Marin Kurtela. 2025. "Investigation on Corrosion Behaviour of Metallic Materials" Coatings 15, no. 12: 1403. https://doi.org/10.3390/coatings15121403
APA StyleRunje, B., & Kurtela, M. (2025). Investigation on Corrosion Behaviour of Metallic Materials. Coatings, 15(12), 1403. https://doi.org/10.3390/coatings15121403
