Design and Electrochemical Performance of One-Dimensional Polyaniline Anode Materials: A Review
Abstract
1. Introduction
2. Polyaniline (PANI) Fundamental Principles and One-Dimensional Nanostructures
2.1. Chemical Structure and Properties of Polyaniline
2.2. Electrochemical Behavior of PANI
2.3. One-Dimensional Polyaniline Nanostructures
2.4. Synthesis Methods of One-Dimensional PANI Nanostructures
3. Modification and Composite of Polyaniline One-Dimensional Materials
3.1. Composite with Carbon-Based Materials and Its Application in Batteries
3.2. Composite with Metal Oxides, Silicon, and Other High-Capacity Materials

4. Electrochemical Performance of One-Dimensional PANI-Based Negative Electrode Materials
4.1. Electrochemical Behavior of One-Dimensional PANI in Energy Storage Systems
4.2. Performance Parameters
4.3. Electrochemical Mechanism and Stability
4.4. Comparison of 1D PANI with Other Conducting Polymers and Carbon-Based Materials
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafarizadeh, H.; Yamini, E.; Zolfaghari, S.M.; Esmaeilion, F.; Assad, M.E.H.; Soltani, M. Navigating challenges in large-scale renewable energy storage: Barriers, solutions, and innovations. Energy Rep. 2024, 12, 2179–2192. [Google Scholar] [CrossRef]
- Njema, G.G.; Ouma, R.B.O.; Kibet, J.K. A review on the recent advances in battery development and energy storage technologies. J. Renew. Energy 2024, 2024, 2329261. [Google Scholar] [CrossRef]
- Fu, H.; Tian, J.; Chin, C.-L.; Liu, H.; Yuan, J.; Tang, S.; Mai, R.; Wu, X. Axial compression behavior of GFRP-steel composite tube confined seawater sea-sand concrete intermediate long columns. Eng. Struct. 2025, 333, 120157. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Lv, L.; Yu, Z.; Yao, W.; Cheng, H.; Niu, W.; Wang, J.; Zhang, J.; Qi, H. Design and Verification of a Wearable Micro-Capacitance Test System for POC Biosensing. IEEE Trans. Instrum. Meas. 2025, 74, 2007411. [Google Scholar]
- Li, L.; Zhang, Q.; He, B.; Pan, R.; Wang, Z.; Chen, M.; Wang, Z.; Yin, K.; Yao, Y.; Wei, L. Advanced multifunctional aqueous rechargeable batteries design: From materials and devices to systems. Adv. Mater. 2022, 34, 2104327. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhou, Y.; Huang, J.; Feng, L.; Yu, P.; Zhang, Q.; Yang, W.; Wang, Y. Rethinking the electrode multiscale microstructures: A review on structuring strategies toward battery manufacturing genome. Adv. Energy Mater. 2023, 13, 2301385. [Google Scholar] [CrossRef]
- Cheng, Z.; Jiang, H.; Zhang, X.; Cheng, F.; Wu, M.; Zhang, H. Fundamental understanding and facing challenges in structural design of porous Si-based anodes for lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2301109. [Google Scholar] [CrossRef]
- Sun, F.; Jiang, H.; Wang, H.; Zhong, Y.; Xu, Y.; Xing, Y.; Yu, M.; Feng, L.-W.; Tang, Z.; Liu, J. Soft fiber electronics based on semiconducting polymer. Chem. Rev. 2023, 123, 4693–4763. [Google Scholar] [CrossRef]
- Mishra, P.K.; Sharma, H.K.; Gupta, R.; Manglik, M.; Brajpuriya, R. A critical review on recent progress on nanostructured polyaniline (PANI) based sensors for various toxic gases: Challenges, applications, and future prospects. Microchem. J. 2025, 208, 112369. [Google Scholar] [CrossRef]
- Cao, G.; Wu, A.; Wang, Z.; Zhong, S.; Cao, Z.; Zhang, H. Enhancing the conductivity and dispersion properties of polyaniline using ethyl orange. Colloids Surf. A Physicochem. Eng. Asp. 2025, 704, 135489. [Google Scholar] [CrossRef]
- Li, N.; Kang, G.; Huang, S.; Biao, J.; Liu, Y.; Kang, F.; Cao, Y. Protonated Polyaniline-Modified Copper Current Collector for Anode-Free Lithium Metal Battery. ACS Appl. Mater. Interfaces 2025, 17, 36627–36638. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, D. One-Dimensional Nanostructured Polyaniline: Syntheses, Morphology Controlling, Formation Mechanisms, New Features, and Applications. Adv. Polym. Technol. 2013, 32, E323–E368. [Google Scholar] [CrossRef]
- Yin, Z.; Zheng, Q. Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview. Adv. Energy Mater. 2012, 2, 179–218. [Google Scholar] [CrossRef]
- Sun, Q.; Park, M.-C.; Deng, Y. Studies on one-dimensional polyaniline (PANI) nanostructures and the morphological evolution. Mater. Chem. Phys. 2008, 110, 276–279. [Google Scholar] [CrossRef]
- Machín, A.; Fontánez, K.; Arango, J.C.; Ortiz, D.; De León, J.; Pinilla, S.; Nicolosi, V.; Petrescu, F.I.; Morant, C.; Márquez, F. One-dimensional (1D) nanostructured materials for energy applications. Materials 2021, 14, 2609. [Google Scholar] [CrossRef]
- Wang, M.-S.; Wang, Z.-Q.; Chen, Z.; Yang, Z.-L.; Tang, Z.-L.; Luo, H.-Y.; Huang, Y.; Li, X.; Xu, W. One dimensional and coaxial polyaniline@ tin dioxide@ multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery. Chem. Eng. J. 2018, 334, 162–171. [Google Scholar] [CrossRef]
- Saji, V.S.; Kim, Y.-S.; Kim, T.-H.; Cho, J.; Song, H.-K. One-dimensional (1D) nanostructured and nanocomposited LiFePO 4: Its perspective advantages for cathode materials of lithium ion batteries. Phys. Chem. Chem. Phys. 2011, 13, 19226–19237. [Google Scholar] [CrossRef]
- Cong, Z.; Guo, W.; Zhang, P.; Sha, W.; Guo, Z.; Chang, C.; Xu, F.; Gang, X.; Hu, W.; Pu, X. Wearable antifreezing fiber-shaped Zn/PANI batteries with suppressed Zn dendrites and operation in sweat electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 17608–17617. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, C.; Gao, L.; Lin, M.-F.; Eh, A.L.-S.; Chen, J.; Li, S. Recent advances in electrospun nanostructured electrodes in zinc-ion batteries. Batteries 2024, 10, 22. [Google Scholar] [CrossRef]
- Liu, H.; Chen, N.; Umar, A.; Li, H.; Li, S.; Bai, P.; Frans de Rooij, N.; Wang, Y.; Zhou, G. In situ construction of the coral-like polyaniline on the aligned silicon nanowire arrays for silicon substrate on-chip supercapacitors. ACS Appl. Energy Mater. 2020, 3, 11792–11802. [Google Scholar] [CrossRef]
- Tahir, M.S.; Kainat, I.; Ghazanfar, H.; Seo, Y.S. Flexible electrodes for high-performance energy storage: Materials, conductivity optimization, and scalable fabrication. Nanoscale 2025, 17, 18016–18048. [Google Scholar] [CrossRef]
- Sabet, M. Advanced functionalization strategies for carbon nanotube polymer composites: Achieving superior dispersion and compatibility. Polym. Plast. Technol. Mater. 2025, 64, 465–494. [Google Scholar] [CrossRef]
- Fu, H.; Zhao, H.; Pan, Z.; Wu, Z.; Chin, C.-L.; Ma, C.-K. Behaviour of Corroded Circular Steel Tube Strengthened with External FRP Tube Grouting Under Eccentric Loading: Numerical Study; Elsevier: Amsterdam, The Netherlands, 2023; p. 104810. [Google Scholar]
- Rahman, S.U.; Dan, X.; Farooq, S.; Sajid, M.; Tao, F.-Y.; Kitchamsetti, N.; Liu, C.; Xu, W.-J.; Zhang, J.-P. Tailoring polyaniline with dual dopant engineering as a high efficiency cathode material for aqueous zinc ion batteries. J. Colloid Interface Sci. 2025, 700, 138600. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, L.; Chen, L.; Liu, X. Recent progress and challenges of flexible supercapacitor-sensor integrated systems based on conductive polymers. J. Mater. Chem. C 2025, 13, 16320–16349. [Google Scholar] [CrossRef]
- Barta, P.; Kugler, T.; Salaneck, W.R.; Monkman, A.P.; Libert, J.; Lazzaroni, R.; Brédas, J.L. Electornic structure of emeraldine and pernigraniline base: A joint theoretical and experimental study. Synth. Met. 1998, 93, 83–87. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Manohar, S.K.; Masters, J.G.; Sun, Y.; Weiss, H.; Epstein, A.J. Polyaniline: Synthesis and properties of pernigraniline base. Synth. Met. 1991, 41, 621–626. [Google Scholar] [CrossRef]
- Zujovic, Z.; Kilmartin, P.A.; Travas-Sejdic, J. The applications of solid-state NMR to conducting polymers. The special case on polyaniline. Molecules 2020, 25, 444. [Google Scholar] [CrossRef]
- Toroń, B.; Das, T.K.; Kozioł, M.; Szperlich, P.; Kępińska, M. Impact of hydrochloric acid doping on polyaniline conductivity and piezoelectric performance in polyaniline/bismuth oxyiodide nanocomposites. Compos. Part B Eng. 2025, 289, 111960. [Google Scholar] [CrossRef]
- Shawky, N.A.; Abdallah, S.M.A.; Sorour, M.H.; Abouelata, A.M.A.; Abdel-Fatah, M.A. Enhancement of Conductivity and Productivity of Polyaniline Emeraldine Salt Using Diverse Treatment Solutions. Egypt. J. Chem. 2025, 68, 1–13. [Google Scholar] [CrossRef]
- Roslan, N.C.; Aizamddin, M.F.; Omar, S.N.I.; Jani, N.A.; Halim, M.I.A.; Ariffin, Z.Z.; Mahat, M.M. Morphological and conductivity studies of polyaniline fabric doped phosphoric acid. Malays. J. Anal. Sci 2020, 24, 698–706. [Google Scholar]
- Liu, R.; Yao, Q.; Liu, L.; Meng, F.; Wang, F. Studies of different acid doped polyaniline incorporated into epoxy organic coatings on the Mg alloy. Prog. Org. Coat. 2022, 166, 106774. [Google Scholar] [CrossRef]
- Mažeikien, R.; Malinauskas, A. Electrochemical stability of polyaniline. Eur. Polym. J. 2002, 38, 1947–1952. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization. Nanomaterials 2022, 12, 2531. [Google Scholar] [CrossRef]
- Rauhala, T.; Davodi, F.; Sainio, J.; Sorsa, O.; Kallio, T. On the stability of polyaniline/carbon nanotube composites as binder-free positive electrodes for electrochemical energy storage. Electrochim. Acta 2020, 336, 135735. [Google Scholar] [CrossRef]
- Acharya, A.D.; Thakur, Y.S. Tuning electrochemical performance of polyaniline-based supercapacitors by inclusion of protonic acid and electrolyte concentration. J. Indian Chem. Soc. 2025, 102, 101836. [Google Scholar] [CrossRef]
- Manuel, J.; Kim, J.-K.; Matic, A.; Jacobsson, P.; Chauhan, G.S.; Ha, J.K.; Cho, K.-K.; Ahn, J.-H. Electrochemical properties of lithium polymer batteries with doped polyaniline as cathode material. Mater. Res. Bull. 2012, 47, 2815–2818. [Google Scholar] [CrossRef]
- Dominic, J.; David, T.; Vanaja, A.; Muralidharan, G.; Maheswari, N.; Kumar, K.K.S. Supercapacitor performance study of lithium chloride doped polyaniline. Appl. Surf. Sci. 2018, 460, 40–47. [Google Scholar] [CrossRef]
- Güngör, A.; Bakan-Misirlioglu, F.; Genç Alturk, R.; Erdem, E. Elevating supercapacitor performance: Enhancing electrochemical efficiency with transition metal-doped polyaniline electrode. J. Energy Storage 2024, 76, 110143. [Google Scholar] [CrossRef]
- Wang, X.; Deng, J.; Duan, X.; Liu, D.; Guo, J.; Liu, P. Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. J. Mater. Chem. A 2014, 2, 12323–12329. [Google Scholar] [CrossRef]
- Du, X.; Liu, S.; Xu, Q.; Shi, X. Synthesis and Electrochemical Performance of MnO2 Nanowires/Polyaniline Composite as Supercapacitor Electrode Material. J. Electron. Mater. 2023, 52. [Google Scholar] [CrossRef]
- Zhang, P.; Cao, L.; Wang, X.; Cui, J.; Lin, Z.; Ngai, S.; Vogel, F.; Wang, H.; Li, W.; Li, S.; et al. Improvement of electrochemical performance of titania nanowires for supercapacitor electrodes by in-situ growth of polyaniline nanoparticles. Ceram. Int. 2022, 48, 1731–1739. [Google Scholar] [CrossRef]
- Chu, J.; Li, X.; Li, Q.; Ma, J.; Wu, B.; Wang, X.; Zhang, R.; Gong, M.; Xiong, S. Hydrothermal synthesis of PANI nanowires for high-performance supercapacitor. High Perform. Polym. 2020, 32, 258–267. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, K.; Ma, J.; Liu, Y.; Liang, X.; Xuan, H.; Han, P. Preparation and Electrochemical Properties of Polyaniline Nanostructures Using Vertically Aligned Mesochannels as Confinement. ChemElectroChem 2022, 9, e202200110. [Google Scholar] [CrossRef]
- Yin, H.; Yang, J. Synthesis of high-performance one-dimensional polyaniline nanostructures using dodecylbenzene sulfonic acid as soft template. Mater. Lett. 2011, 65, 850–853. [Google Scholar] [CrossRef]
- Li, G.; Jiang, L.; Peng, H. One-Dimensional Polyaniline Nanostructures with Controllable Surfaces and Diameters Using Vanadic Acid as the Oxidant. Macromolecules 2007, 40, 7890–7894. [Google Scholar] [CrossRef]
- He, Y. One-dimensional polyaniline nanostructures synthesized by interfacial polymerization in a solids-stabilized emulsion. Appl. Surf. Sci. 2006, 252, 2115–2118. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, M.; Yin, X.; Shao, Q.; Lu, N.; Feng, Y.; Lu, Y.; Wujcik, E.K.; Mai, X.; Wang, C.; et al. Tuning polyaniline nanostructures via end group substitutions and their morphology dependent electrochemical performances. Polymer 2018, 156, 128–135. [Google Scholar] [CrossRef]
- Xia, H.; Narayanan, J.; Cheng, D.; Xiao, C.; Liu, X.; Chan, H.S.O. Formation of Ordered Arrays of Oriented Polyaniline Nanoparticle Nanorods. J. Phys. Chem. B 2005, 109, 12677–12684. [Google Scholar] [CrossRef] [PubMed]
- Simotwo, S.K.; DelRe, C.; Kalra, V. Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline–Carbon Nanotube Nanofibers. ACS Appl. Mater. Interfaces 2016, 8, 21261–21269. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Moharram, Y.I.; Abouharga, F.S.; Elfiky, M. Electrospun polyacrylonitrile-polyphenyl/magnetite nanofiber electrode for enhanced capacitance of supercapacitor. Sci. Rep. 2025, 15, 14885. [Google Scholar] [CrossRef]
- Miao, Y.-E.; Fan, W.; Chen, D.; Liu, T. High-Performance Supercapacitors Based on Hollow Polyaniline Nanofibers by Electrospinning. ACS Appl. Mater. Interfaces 2013, 5, 4423–4428. [Google Scholar] [CrossRef]
- Pahovnik, D.; Žagar, E.; Kogej, K.; Vohlídal, J.; Žigon, M. Polyaniline nanostructures prepared in acidic aqueous solutions of ionic liquids acting as soft templates. Eur. Polym. J. 2013, 49, 1381–1390. [Google Scholar] [CrossRef]
- Qiu, H.; Qi, S.; Wang, D.; Wang, J.; Wu, X. Synthesis of polyaniline nanostructures via soft template of sucrose octaacetate. Synth. Met. 2010, 160, 1179–1183. [Google Scholar] [CrossRef]
- Gamero-Quijano, A.; Karman, C.; Vilà, N.; Herzog, G.; Walcarius, A. Vertically Aligned and Ordered One-Dimensional Mesoscale Polyaniline. Langmuir 2017, 33, 4224–4234. [Google Scholar] [CrossRef]
- Cao, G.; Xu, J.; Cai, S.; Chen, Y.; Zhou, D.; Zhang, H.; Jiang, C.; Zhang, G.; Tian, Y. Highly conductive and dispersible polyaniline microtubes controlled by methyl orange. ACS Appl. Polym. Mater. 2022, 5, 593–601. [Google Scholar] [CrossRef]
- Li, M.; Chen, H.; Guo, C.; Qian, S.; Li, H.; Wu, Z.; Xing, C.; Xue, P.; Zhang, S. Interfacial Engineering on Cathode and Anode with Iminated Polyaniline@ rGO-CNTs for Robust and High-Rate Full Lithium–Sulfur Batteries. Adv. Energy Mater. 2023, 13, 2300646. [Google Scholar]
- Yuan, S.; Sun, G.; Hong, J.; Jin, H. Black Phosphorus/PANI/Carbon Nanotube Composite as a Lithium-Ion Battery Anode. ACS Appl. Nano Mater. 2024, 7, 7766–7772. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Xie, S.; Zhou, Y.; Rong, J.; Dong, L. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem. Eng. J. 2022, 427, 131799. [Google Scholar] [CrossRef]
- Xu, C.; Yang, X.; Hu, C.; Zhang, J.; Yang, L.; Yin, S. One pot synthesis of polyoxometalate@polyaniline/MXene/CNTs quaternary composites with a 3D structure as efficient electrode materials for Li-ion batteries applications. Compos. Commun. 2024, 45, 101814. [Google Scholar] [CrossRef]
- Shahid, A.; Kayani, Z.N.; Sahar, M.; Shahid, E.; Riaz, S.; Naseem, S. Pr2CuO4/MWCNT/MXene/PANI: A novel quaternary composite with tunable properties for potential applications in optoelectronics and energy storage devices. J. Alloys Compd. 2025, 1010, 177264. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, X.; Ding, B.; Zou, L.; Wang, P.; Li, C.; Hong, X.; Wang, Z. MXene/PANI composite fiber-based asymmetric supercapacitors for self-powered energy storage system. Mater. Lett. 2024, 355, 135494. [Google Scholar] [CrossRef]
- Li, X.; Liu, M.; Fang, Y.; Wu, Z.; Dong, J.; Zhao, X.; Teng, C. Flexible and efficient MXene/PANI/aramid fabrics with high interface durability for wearable electromagnetic wave shielding. Compos. Commun. 2024, 45, 101776. [Google Scholar] [CrossRef]
- Jin, L.; Jiang, Y.; Zhang, M.; Li, H.; Xiao, L.; Li, M.; Ao, Y. Oriented polyaniline nanowire arrays grown on dendrimer (PAMAM) functionalized multiwalled carbon nanotubes as supercapacitor electrode materials. Sci. Rep. 2018, 8, 6268. [Google Scholar] [CrossRef]
- Eldona, C.; Hanif Hawari, N.; Haidar Hamid, F.; Dempwolf, W.; Iskandar, F.; Peiner, E.; Suryo Wasisto, H.; Sumboja, A. A free-standing polyaniline/silicon nanowire forest as the anode for lithium-ion batteries. Chem. Asian J. 2022, 17, e202200946. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, K.; Niu, C.; Zhang, L.; Cai, Z.; Han, C.; He, L.; Shen, T.; Yan, M.; Qu, L. Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy 2014, 8, 196–204. [Google Scholar]
- Baboukani, A.R.; Khakpour, I.; Adelowo, E.; Drozd, V.; Shang, W.; Wang, C. High-performance red phosphorus-sulfurized polyacrylonitrile composite by electrostatic spray deposition for lithium-ion batteries. Electrochim. Acta 2020, 345, 136227. [Google Scholar]
- Krithika, S.; Balavijayalakshmi, J. Investigation of structural, morphological and electrochemical properties of MoS2/PANI/SnO2 nanocomposites for energy storage applications. Inorg. Chem. Commun. 2023, 148, 110324. [Google Scholar]
- Wang, Q.; Hui, J.; Li, J.; Cai, Y.; Yin, S.; Wang, F.; Su, B. Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation. Appl. Surf. Sci. 2013, 283, 577–583. [Google Scholar] [CrossRef]
- Nie, G.; Lu, X.; Wang, W.; Chi, M.; Jiang, Y.; Wang, C. One-dimensional polyaniline thorn/BiOCl chip heterostructures: Self-sacrificial template-induced synthesis and electrochemical performance. Mater. Chem. Front. 2017, 1, 859–866. [Google Scholar] [CrossRef]
- Ye, W.; Zhu, J.; Liao, X.; Jiang, S.; Li, Y.; Fang, H.; Hou, H. Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J. Power Sources 2015, 299, 417–424. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Hua, K.; Li, S.; Fang, D.; Luo, Z.; Bao, R.; Fan, X.; Yi, J. Vertically aligned polyaniline nanowire arrays for lithium-ion battery. Colloid Polym. Sci. 2018, 296, 1395–1400. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, S.; Liu, S.; Ren, L.; Wang, S.; Fu, J. Preparation of polyaniline-coated β-AgVO3 nanowires and their application in lithium-ion battery. Mater. Lett. 2013, 110, 168–171. [Google Scholar] [CrossRef]
- Ma, D.; Yin, X.; Li, X.; Qin, X.; Qi, M. Study on the Performance of Aniline Electrodeposited on MnO2 Nanowire as an Anode for Sodium-Ion Batteries. Polymers 2024, 16, 1856. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, G.; Xiao, L.; Li, P.; Li, W.; Xu, Q.; Xu, J. Polyaniline Encapsulated Amorphous V2O5 Nanowire-Modified Multi-Functional Separators for Lithium—Sulfur Batteries. Small Methods 2021, 5, 2001056. [Google Scholar] [CrossRef]
- Lei, H.; Tu, J.; Li, S.; Huang, Z.; Luo, Y.; Yu, Z.; Jiao, S. Graphene-encapsulated selenium@ polyaniline nanowires with three-dimensional hierarchical architecture for high-capacity aluminum–selenium batteries. J. Mater. Chem. A 2022, 10, 15146–15154. [Google Scholar]
- Fu, X.; Zhang, W.; Lan, B.; Wen, J.; Zhang, S.; Luo, P.; Zhang, R.; Hu, S.; Liu, Q. Polyaniline Nanorod Arrays as a Cathode Material for High-Rate Zinc-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 12360–12367. [Google Scholar] [CrossRef]
- Wen, J.; Hu, Z.; Song, R.; Huang, R.; Liu, Q.; Zhang, R.; Hu, S.; Fu, X. MnO2@ PANI nanorod arrays for high-performance aqueous zinc-ion batteries. J. Alloys Compd. 2024, 976, 173209. [Google Scholar] [CrossRef]
- Mansour, F.R.; Bedair, A.; de Souza, F.M.; Gupta, R.K. Battery Efficiency and Performance Scoring Index (BEPSI) as an innovative evaluation and comparison tool. Chem. Eng. J. 2025, 519, 164937. [Google Scholar] [CrossRef]
- Li, X.; Yin, X.; Liu, Z.; Li, H.; Qi, M.; Mu, X.; Cui, J. Self-standing TiO2@ CC@ PANI core–shell nanowires as flexibles lithium-ion battery anodes. J. Mater. Sci. 2024, 59, 20657–20670. [Google Scholar]
- Abavi-Torghabeh, N.; Kalantarian, M.M.; Dehkhoda, S.; Sadeghian, Z. A systematic evaluation of charge-discharge behaviors, performance, and rate-capability of Al-ion batteries. Electrochim. Acta 2023, 437, 141508. [Google Scholar] [CrossRef]
- Wu, F.; Chen, J.; Li, L.; Zhao, T.; Chen, R. Improvement of Rate and Cycle Performence by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode. J. Phys. Chem. C 2011, 115, 24411–24417. [Google Scholar] [CrossRef]
- Li, Z.; Gong, L. Research progress on applications of polyaniline (PANI) for electrochemical energy storage and conversion. Materials 2020, 13, 548. [Google Scholar] [CrossRef]
- Majeed, A.H.; Mohammed, L.A.; Hammoodi, O.G.; Sehgal, S.; Alheety, M.A.; Saxena, K.K.; Dadoosh, S.A.; Mohammed, I.K.; Jasim, M.M.; Salmaan, N.U. A review on polyaniline: Synthesis, properties, nanocomposites, and electrochemical applications. Int. J. Polym. Sci. 2022, 2022, 9047554. [Google Scholar] [CrossRef]
- Yoon, S.-B.; Yoon, E.-H.; Kim, K.-B. Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J. Power Sources 2011, 196, 10791–10797. [Google Scholar]
- Sekar, P.; Anothumakkool, B.; Vijayakumar, V.; Lohgaonkar, A.; Kurungot, S. Unravelling the mechanism of electrochemical degradation of PANI in supercapacitors: Achieving a feasible solution. ChemElectroChem 2016, 3, 933–942. [Google Scholar] [CrossRef]
- Tundwal, A.; Kumar, H.; Binoj, B.J.; Sharma, R.; Kumar, G.; Kumari, R.; Dhayal, A.; Yadav, A.; Singh, D.; Kumar, P. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: A review. RSC Adv. 2024, 14, 9406–9439. [Google Scholar] [CrossRef]
- Chang, X.; Yang, Z.; Huang, A.; Katsuyama, Y.; Lin, C.-W.; El-Kady, M.F.; Wang, C.; Kaner, R.B. Understanding the Degradation Mechanisms of Conducting Polymer Supercapacitors. Macromol. Rapid Commun. 2024, 45, 2300237. [Google Scholar] [CrossRef]
- Nunes, W.G.; Pires, B.M.; Thaines, E.H.N.S.; Pereira, G.M.A.; da Silva, L.M.; Freitas, R.G.; Zanin, H. Operando Raman spectroelectrochemical study of polyaniline degradation: A joint experimental and theoretical analysis. J. Energy Storage 2022, 55, 105770. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Tang, S.; Zheng, R.; Jia, C. Ultrahigh cycling stability and wide infrared modulation of electrochromic devices based on electrodeposited triphenylamine cross-linked polyaniline derivatives. J. Mater. Chem. A 2024, 12, 32104–32116. [Google Scholar] [CrossRef]
- Yoon, Y.; Shin, S.; Shin, M.W. Study on the Structural Degradation of the Polyaniline(PANi) Coated LiNi0.90Co0.85Mn0.15o Particles. ECS Meet. Abstr. 2022, MA2022-02, 303. [Google Scholar] [CrossRef]
- Sumdani, M.G.; Islam, M.R.; Yahaya, A.N.A.; Safie, S.I. Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review. Polym. Eng. Sci. 2022, 62, 269–303. [Google Scholar] [CrossRef]
- Shawky, N.A.; Abdallah, S.M.; Sorour, M.H.; Abouelata, A.M.A.; Abdel-Fatah, M.A. Electrochemical Polymerization of Polyaniline: A Comprehensive Review of Synthesis Conditions, Nanocomposites, and Industrial Applications. Cureus J. 2025, 2, 1–18. [Google Scholar] [CrossRef]
- Gupta, R. A review of functionalized nanomaterials for supercapacitor and hybrid capacitor technologies. Discov. Electron. 2024, 1, 24. [Google Scholar] [CrossRef]
- Mahdavi, H.; Shahalizade, T. Investigation of the pseudocapacitive properties of polyaniline nanostructures obtained from scalable chemical oxidative synthesis routes. Ionics 2019, 25, 1331–1340. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, E.; Wang, Z.; Feng, T.; Xie, A. Redox-Active Anthraquinone-1-Sulfonic Acid Sodium Salt-Loaded Polyaniline for Dual-Functional Electrochromic Supercapacitors. Gels 2025, 11, 568. [Google Scholar] [CrossRef]
- Cevher, D. Electroactive Polymers for Next-Generation Energy Storage and Conductive Composite Materials: A Focus on Pani and Pedot-Based Conjugated Polymers. Ph.D. Thesis, Middle East Technical University, Ankara, Türkiye, 2024. [Google Scholar]
- Patil, A.; Kamble, G.; Tawade, A.; Sharma, K.; Kim, J.; Dalavi, D. One-dimensional polyaniline nanoworms: Binder-free electrodes for next-generation supercapacitors. Chem. Pap. 2025, 1–10. [Google Scholar] [CrossRef]
- Zoric, M.R.; Fabbri, E.; Herranz, J.; Schmidt, T.J. In Situ and Operando Spectroscopic Techniques for Electrochemical Energy Storage and Conversion Applications. J. Phys. Chem. C 2024, 128, 19055–19070. [Google Scholar] [CrossRef]
- Hong, Y.; Jia, K.; Zhang, Y.; Li, Z.; Jia, J.; Chen, J.; Liang, Q.; Sun, H.; Gao, Q.; Zhou, D.; et al. Energetic and durable all-polymer aqueous battery for sustainable, flexible power. Nat. Commun. 2024, 15, 9539. [Google Scholar] [CrossRef] [PubMed]
- Goldoni, R.; Thomaz, D.V.; Ottolini, M.; Di Giulio, S.; Di Giulio, T. Characterization of In situ electrosynthesis of polyaniline on pencil graphite electrodes through electrochemical, spectroscopical and computational methods. J. Mater. Sci. 2024, 59, 10287–10308. [Google Scholar] [CrossRef]
- Liu, E.; Liu, C.; Zhu, Z.; Shi, H.; Jiang, Q.; Jiang, F.; Xu, J.; Xiong, J.; Hu, Y. Enhanced thermoelectric performance of PEDOT:PSS films by solvent thermal treatment. J. Polym. Res. 2015, 22, 240. [Google Scholar] [CrossRef]
- Cao, G.; Cai, S.; Chen, Y.; Zhou, D.; Zhang, H.; Tian, Y. Facile synthesis of highly conductive and dispersible PEDOT particles. Polymer 2022, 252, 124952. [Google Scholar] [CrossRef]
- Cao, G.; Cui, H.; Wang, L.; Wang, T.; Tian, Y. Highly conductive and highly dispersed polythiophene nanoparticles for fabricating high-performance conductive adhesives. ACS Appl. Electron. Mater. 2020, 2, 2750–2759. [Google Scholar] [CrossRef]
- Ayanda, O.S.; Mmuoegbulam, A.O.; Okezie, O.; Durumin Iya, N.I.; Mohammed, S.A.E.; James, P.H.; Muhammad, A.B.; Unimke, A.A.; Alim, S.A.; Yahaya, S.M. Recent progress in carbon-based nanomaterials: Critical review. J. Nanoparticle Res. 2024, 26, 106. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, F.; Liu, X.; Lu, D.; Liu, T.; Li, Y.; Wu, Z. Sandwich-structure CNT-graphene film with covalent bond for high-performance electromagnetic shielding and thermal management. Carbon 2024, 228, 119420. [Google Scholar]
- Gharahcheshmeh, M.H.; Chowdhury, K. Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices. Energy Adv. 2024, 3, 2668–2703. [Google Scholar] [CrossRef]
- Hussain, T.; Chandio, I.; Ali, A.; Hyder, A.; Memon, A.A.; Yang, J.; Thebo, K.H. Recent developments of artificial intelligence in MXene-based devices: From synthesis to applications. Nanoscale 2024, 16, 17723–17760. [Google Scholar] [CrossRef]
- Boublia, A.; Guezzout, Z.; Haddaoui, N.; Badawi, M.; Darwish, A.S.; Lemaoui, T.; Banat, F.; Yadav, K.K.; Jeon, B.-H.; Elboughdiri, N. Enhancing precision in PANI/Gr nanocomposite design: Robust machine learning models, outlier resilience, and molecular input insights for superior electrical conductivity and gas sensing performance. J. Mater. Chem. A 2024, 12, 2209–2236. [Google Scholar]
- Cheetham, A.K.; Seshadri, R. Artificial Intelligence Driving Materials Discovery? Perspective on the Article: Scaling Deep Learning for Materials Discovery. Chem. Mater. 2024, 36, 3490–3495. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, M.; Sun, F.; Sun, Q.; Cao, G.; Wu, X.; Ling, H.; Su, F.; Tian, Y.; Liu, Y.J. High-Efficiency and High-Capacity Aqueous Electrochromic Energy Storage Devices Enabled by Decoupled Titanium Oxide/Viologen Derivative Hybrid Materials. Research 2025, 8, 909. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Hu, Z.; Yang, Z.; Zhang, J.; Wu, J.J.; Cheng, C.; Wang, C.; Zheng, L. Capacitive aptasensor coupled with microfluidic enrichment for real-time detection of trace SARS-CoV-2 nucleocapsid protein. Anal. Chem. 2022, 94, 2812–2819. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yan, L.; Hou, Z.; Lin, J.; Zhao, Y.; Ji, Z.; Wang, Y. Error Analysis Strategy for Long-term Correlated Network Systems: Generalized Nonlinear Stochastic Processes and Dual-Layer Filtering Architecture. IEEE Internet Things J. 2025, 12, 33731–33745. [Google Scholar] [CrossRef]
- Fu, H.; Tian, J.; Chen, S.; Chin, C.-L.; Ma, C.-K. Axial compressive performance of CFRP-steel composite tube confined seawater sea-sand concrete intermediate slender columns. Constr. Build. Mater. 2024, 441, 137399. [Google Scholar] [CrossRef]








| Synthesis Method | Main Features/Reaction Conditions | Product Morphology | Electrochemical Performance | References |
|---|---|---|---|---|
| Chemical Oxidative Polymerization | Using oxidizing agents such as persulfates, aniline monomers polymerize in solution to form PANI | Nanotubes, nanofibers | PANI nanotubes (350–650 nm diameter, tens of micrometers long), specific capacitance 455.1 F g−1, good cycling stability (retains capacity after 1300 cycles) | [17] |
| Electrospinning | Stretching polymer solution into fibers using an electric field, improving conductivity with PEO and CNTs | Nanofibers, microtubes | PANI-CNT electrodes specific capacitance 385 F g−1, capacitance retention rate 81.4% (after 1000 cycles) | [21] |
| Template-Assisted Synthesis | Using hard templates (e.g., anodized aluminum oxide) or soft templates (e.g., micelles) for guidance | Nanowires, nanorods, nanotubes | Nanotube diameter 350–650 nm, good electrochemical performance; other examples using EO or MO templates to enhance conductivity | [24,25,27,28] |
| Material System | Battery Type/Application | Specific Capacity or Capacitance | Rate Capability | Cycling Stability | Key Features | Ref. |
|---|---|---|---|---|---|---|
| PANI/Si nanowire array | Li-ion battery | 2.0 mAh·cm−2 | Stable at 2 mA·cm−2 | Retained capacity after 346 cycles | PANI coating buffers Si volume expansion | [64] |
| SnO2@PANI nanorod array | Li-ion battery | 506 mAh·g−1 | 660 mAh·g−1 at 3 A·g−1 | 100 cycles (0.58% loss/cycle) | 3D core–shell structure enhances conductivity | [65] |
| GF@SnO2@PANI | Li-ion battery | 540 mAh·g−1 | 414 mAh·g−1 at 3 A·g−1 | Stable after 50 cycles | Graphite foam improves ion diffusion | [66] |
| PANI/(BP–CNT) composite | Li-ion battery | 2127.9 mAh·g−1 | — | 1150.7 mAh·g−1 after 100 cycles | CNTs stabilize BP, PANI enhances conductivity | [57] |
| MnO2@PANI nanorods | Zn-ion battery | 293.7 mAh·g−1 | 51% retention (10× current) | 95.2% after 10,000 cycles | Flexible PANI buffer and conductive matrix | [74] |
| f-CNT/PANI composite | Zn-based EES | — | High rate and capacity | Excellent long-term flexibility | Dual redox + capacitive mechanism | [58] |
| Pr2CuO4/MXene/MWCNT/PANI (50:50) | Supercapacitor | 2611.47 F·g−1 | 58.03 Wh·kg−1 | Stable for >5000 cycles | Synergistic MXene/PANI interface | [60] |
| MXene/PANI fiber electrode | Flexible supercapacitor | 510 mF·cm−2 | 15.71 μWh·cm−2 | Maintained performance after bending | Wearable energy device | [61] |
| PANI spiky/BiOCl heterostructure | Supercapacitor | — | Improved rate performance | Stable in neutral media | Hierarchical BiOCl-PANI synergy | [67] |
| TiO2@CC@PANI nanowire | Li-ion battery | 297.7 mAh·g−1 | 200 mAh·g−1 at 500 mA·g−1 | Stable after 100 cycles | Core–shell enhances charge transfer | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Zhang, H.; Cao, G. Design and Electrochemical Performance of One-Dimensional Polyaniline Anode Materials: A Review. Coatings 2025, 15, 1283. https://doi.org/10.3390/coatings15111283
Lu G, Zhang H, Cao G. Design and Electrochemical Performance of One-Dimensional Polyaniline Anode Materials: A Review. Coatings. 2025; 15(11):1283. https://doi.org/10.3390/coatings15111283
Chicago/Turabian StyleLu, Guangyu, He Zhang, and Ge Cao. 2025. "Design and Electrochemical Performance of One-Dimensional Polyaniline Anode Materials: A Review" Coatings 15, no. 11: 1283. https://doi.org/10.3390/coatings15111283
APA StyleLu, G., Zhang, H., & Cao, G. (2025). Design and Electrochemical Performance of One-Dimensional Polyaniline Anode Materials: A Review. Coatings, 15(11), 1283. https://doi.org/10.3390/coatings15111283
