Preparation and Properties of Composite Coatings Fabricated from Carved Lacquer Waste and Waterborne Acrylic Resin
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Coatings
2.3. Testing and Characterization
2.3.1. Color Measurement
2.3.2. Gloss Measurement
2.3.3. Mechanical Properties
2.3.4. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.5. Chemical Resistance
2.3.6. Morphological Analysis
3. Results
3.1. Colorimetric and Gloss Characteristics of Composite Coatings
3.2. Mechanical Performance of Composite Coatings
3.3. FTIR-Based Evaluation of Composite Coating Curing
3.4. Chemical Resistance Behavior of Composite Coatings
3.5. Morphology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.; Han, H.; Kim, D.; Lee, B.; Cho, J.H.; Lee, Y.; Lee, S.; Lim, J.A. Mixed urushiol and laccol compositions in natural lacquers: Convenient evaluation method and its effect on the physicochemical properties of lacquer coatings. Prog. Org. Coat. 2021, 154, 106195. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, B.; Jiang, L.; Wu, J.; Sun, G. Natural lacquer was used as a coating and an adhesive 8000 years ago, by early humans at Kuahuqiao, determined by ELISA. J. Archaeol. Sci. 2018, 100, 80–87. [Google Scholar] [CrossRef]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental Lacquer: A Natural Polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Yang, J.; Deng, J.; Zhu, J.; Liu, W.; Zhou, M.; Li, D. Thermal polymerization of lacquer sap and its effects on the properties of lacquer film. Prog. Org. Coat. 2016, 94, 41–48. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, T.; Min, J.; Li, G.; Ding, Y.; Liu, J.; Gu, A.; Kang, B.; Li, Y.; Lei, Y. Analytical investigation into materials and technique: Carved lacquer decorated panel from Fuwangge in the Forbidden City of Qianlong Period, Qing Dynasty. J. Archaeol. Sci. Rep. 2018, 17, 529–537. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Zhao, Y.; Wen, Q.; Xie, Z.; Yuan, Y.; Tong, T.; Shen, X.; Tong, H. Composition/structure and lacquering craft analysis of Wenzhou Song dynasty lacquerware. Anal. Methods 2016, 8, 6529–6536. [Google Scholar] [CrossRef]
- Niimura, N.; Miyakoshi, T. Structural study of oriental lacquer films during the hardening process. Talanta 2006, 70, 146–152. [Google Scholar] [CrossRef]
- Wei, S.; Pintus, V.; Pitthard, V.; Schreiner, M.; Song, G. Analytical characterization of lacquer objects excavated from a Chu tomb in China. J. Archaeol. Sci. 2011, 38, 2667–2674. [Google Scholar] [CrossRef]
- Xia, J.-R. Study on UV-Curing Natural Raw Lacquer and Its Composite Systems. Ph.D. Thesis, Fujian Normal University, Fuzhou, China, 2012; pp. 53–54. [Google Scholar]
- Schwalm, R.; Häußling, L.; Reich, W.; Beck, E.; Enenkel, P.; Menzel, K. Tuning the Mechanical Properties of UV Coatings towards Hard and Flexible Systems. Prog. Org. Coat. 1997, 32, 191–196. [Google Scholar] [CrossRef]
- Hwang, H.D.; Park, C.H.; Moon, J.I.; Kim, H.J.; Masubuchi, T. UV-curing behavior and physical properties of waterborne UV-curable polycarbonate-based polyurethane dispersion. Prog. Org. Coat. 2011, 72, 663–675. [Google Scholar] [CrossRef]
- Decker, C.; Masson, F.; Schwalm, R. How to speed up the UV curing of water-based acrylic coatings. J. Coat. Technol. Res. 2004, 1, 127–136. [Google Scholar] [CrossRef]
- Kim, H.J.; Czech, Z.; Bartkowiak, M.; Shim, G.S.; Kabatc, J.; Licbarski, A. Study of UV-initiated polymerization and UV crosslinking of acrylic monomers mixture for the production of solvent-free pressure-sensitive adhesive films. Polym. Test. 2022, 105, 107424. [Google Scholar] [CrossRef]
- Yan, R.; Yang, D.; Zhang, N.; Zhao, Q.; Liu, B.; Xiang, W.; Sun, Z.; Xu, R.; Zhang, M.; Hu, W. Performance of UV curable lignin based epoxy acrylate coatings. Prog. Org. Coat. 2018, 116, 83–89. [Google Scholar] [CrossRef]
- Huang, J.; Xiong, Y.; Zhou, X.; Yang, Z.; Yuan, T. A novel polyfunctional polyurethane acrylate prepolymer derived from bio-based polyols for UV-curable coatings applications. Polym. Test. 2022, 106, 107439. [Google Scholar] [CrossRef]
- Meng, Y.; Gao, Y.; Li, J.; Liu, J.; Wang, X.; Yu, F.; Wang, T.; Gao, K.; Zhang, Z. Preparation and characterization of cross-linked waterborne acrylic/PTFE composite coating with good hydrophobicity and anticorrosion properties. Colloids Surf. A 2022, 653, 129872. [Google Scholar] [CrossRef]
- Yan, X.; Wang, L.; Qian, X. Preparation and Characterization of Low Infrared Emissive Aluminum/Waterborne Acrylic Coatings. Coatings 2020, 10, 35. [Google Scholar] [CrossRef]
- Huang, X.; Sun, J.; Lv, K.; Liu, J.; Shen, H.; Zhang, F. Application of core-shell structural acrylic resin/nano-SiO2 composite in water based drilling fluid to plug shale pores. J. Nat. Gas Sci. Eng. 2018, 55, 418–425. [Google Scholar] [CrossRef]
- GB/T 3181-2008; The Colour of Paint Films*. China Standard Press: Beijing, China, 2008.
- GB/T 1743-1979; Determination of Gloss of Paint Films*. China Standard Press: Beijing, China, 1979.
- GB/T 9271-2008; Standard Panels for Testing*. China Standard Press: Beijing, China, 2008.
- GB/T 1720-2020; Determination of Adhesion of Paint Films*. China Standard Press: Beijing, China, 2020.
- GB/T 1731-2020; Determination of Flexibility of Paint Films*. China Standard Press: Beijing, China, 2020.
- GB/T 1732-2020; Determination of Impact Resistance of Paint Film*. China Standard Press: Beijing, China, 2020.
- Zhang, Q.; Huang, C.; Wang, H.; Hu, M.; Li, H.; Liu, X. UV-curable coating crosslinked by a novel hyperbranched polyurethane acrylate with excellent mechanical properties and hardness. RSC Adv. 2016, 6, 107942–107950. [Google Scholar] [CrossRef]
- Dong, F.; Maganty, S.; Meschter, S.J.; Cho, J. Effects of curing conditions on structural evolution and mechanical properties of UV-curable polyurethane acrylate coatings. Prog. Org. Coat. 2018, 114, 58–67. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, Y.; Zhang, T.; Dai, Y.; Yang, D.; Qiu, F.; Yang, P. Synthesis of UV-curing waterborne polyurethane-acrylate coating and its photopolymerization kinetics using FT-IR and photo-DSC methods. Prog. Org. Coat. 2018, 122, 10–18. [Google Scholar] [CrossRef]
- Xu, H.; Qiu, F.; Wang, Y.; Wu, W.; Yang, D.; Guo, Q. UV-curable waterborne polyurethane-acrylate: Preparation, characterization and properties. Prog. Org. Coat. 2012, 73, 47–53. [Google Scholar] [CrossRef]
- Nguyen, N.L.; Dang, T.M.L.; Nguyen, T.A.; Ha, H.T.; Nguyen, T.V. Study on microstructure and properties of the UV curing acrylic epoxy/SiO2 nanocomposite coating. J. Nanomater. 2021, 2021, 8493201. [Google Scholar]
- Kardar, P.; Ebrahimi, M.; Bastani, S. Curing behaviour and mechanical properties of pigmented UV-curable epoxy acrylate coatings. Pigment Resin Technol. 2014, 43, 177–184. [Google Scholar] [CrossRef]
- Jančovičová, V.; Mikula, M.; Havlinova, B.; Jakubíková, Z. Influence of UV-curing conditions on polymerization kinetics and gloss of urethane acrylate coatings. Prog. Org. Coat. 2013, 76, 432–438. [Google Scholar] [CrossRef]
- Fu, J.; Yu, H.; Wang, L.; Lin, L.; Khan, R.U. Preparation and properties of UV-curable hyperbranched polyurethane acrylate hard coatings. Prog. Org. Coat. 2020, 144, 105635. [Google Scholar] [CrossRef]
- Kiran, M.D.; Govindaraju, H.K.; Jayaraju, T.; Kumar, N. Effect of fillers on mechanical properties of polymer matrix composites. Mater. Today Proc. 2018, 5, 22421–22424. [Google Scholar] [CrossRef]
- Kundie, F.; Azhari, C.H.; Muchtar, A.; Ahmad, Z.A. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. J. Phys. Sci. 2018, 29, 141–165. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, W.; Wang, X.; Mu, Y. Effect of average functionality on properties of UV-curable waterborne polyurethane-acrylate. Prog. Org. Coat. 2010, 68, 201–207. [Google Scholar] [CrossRef]
- Decker, C. Kinetic study and new applications of UV radiation curing. Macromol. Rapid Commun. 2002, 23, 1067–1093. [Google Scholar] [CrossRef]
- Chun, J.H.; Cheon, J.M.; Jeong, B.Y.; Jo, N.J. Preparation and characterization of UV cured optical films containing a fluorene compound. Mol. Cryst. Liq. Cryst. 2015, 622, 6–13. [Google Scholar] [CrossRef]
- Li, C.; Xiao, H.; Wang, X.; Zhao, T. Development of green waterborne UV-curable vegetable oil-based urethane acrylate pigment prints adhesive: Preparation and application. J. Clean. Prod. 2018, 180, 272–279. [Google Scholar] [CrossRef]
- Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 2010, 43, 6245–6260. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Zhang, S.; Wei, S.; Jin, C.; Zhang, Y.; Dong, H.; Song, Y.; Qu, Z.; Wu, C. Preparation and properties of UV-curable silicone materials bridged by trifluoropropyl (methyl) siloxyl groups. Prog. Org. Coat. 2025, 201, 109129. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Hong, P.; Chen, L.; Liu, X. Synthesis of organic and inorganic hybrid nanoparticles as multifunctional photoinitiator and its application in UV-curable epoxy acrylate-based coating systems. Prog. Org. Coat. 2020, 141, 105565. [Google Scholar] [CrossRef]






| Sample No. | Deionized Water (wt%) | Carved Lacquer Powder (wt%) | Resin (Fixed, 20 g) |
|---|---|---|---|
| 1 | 10 | 10 | 20 |
| 2 | 10 | 20 | 20 |
| 3 | 10 | 30 | 20 |
| 4 | 15 | 10 | 20 |
| 5 | 15 | 20 | 20 |
| 6 | 15 | 30 | 20 |
| 7 | 20 | 10 | 20 |
| 8 | 20 | 20 | 20 |
| 9 | 20 | 30 | 20 |
| Source | Parameter | Type III Sum of Squares | Mean Square | F-Value | p-Value | Significance |
|---|---|---|---|---|---|---|
| Carved lacquer powder | L* | 41.569 | 20.784 | 21.007 | <0.01 | Significant |
| a* | 100.400 | 50.200 | 745.419 | <0.01 | ||
| b* | 8.001 | 4.000 | 878.845 | <0.01 | ||
| Gloss | 1542.216 | 771.108 | 287.013 | <0.01 | ||
| Deionized water | L* | 3.430 | 1.715 | 1.733 | 0.205 | Not significant |
| a* | 0.269 | 0.134 | 1.995 | 0.165 | ||
| b* | 0.025 | 0.012 | 2.740 | 0.091 | ||
| Gloss | 7.296 | 3.648 | 1.358 | 0.282 |
| Sample | H2O (48 h) | 10% NaOH (1 h) | 10% HCl (48 h) | 10% NaCl (48 h) |
|---|---|---|---|---|
| 10% lacquer powder | Peeling | Peeling, swelling/curling, gloss loss/discoloration | Peeling, solution slightly discolored | Peeling |
| 20% lacquer powder | Peeling | Peeling, swelling/curling, gloss loss/discoloration | Peeling, solution slightly discolored | Peeling |
| 30% lacquer powder | Peeling, curling, wrinkling | Peeling, swelling/curling, gloss loss/discoloration, wrinkling | Peeling, curling, solution slightly discolored, wrinkling | Peeling, curling, wrinkling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Feng, Y.; Olarescu, A.; Chen, Y.; Liu, X. Preparation and Properties of Composite Coatings Fabricated from Carved Lacquer Waste and Waterborne Acrylic Resin. Coatings 2025, 15, 1230. https://doi.org/10.3390/coatings15101230
Du X, Feng Y, Olarescu A, Chen Y, Liu X. Preparation and Properties of Composite Coatings Fabricated from Carved Lacquer Waste and Waterborne Acrylic Resin. Coatings. 2025; 15(10):1230. https://doi.org/10.3390/coatings15101230
Chicago/Turabian StyleDu, Xinyue, Yuemin Feng, Alin Olarescu, Yushu Chen, and Xinyou Liu. 2025. "Preparation and Properties of Composite Coatings Fabricated from Carved Lacquer Waste and Waterborne Acrylic Resin" Coatings 15, no. 10: 1230. https://doi.org/10.3390/coatings15101230
APA StyleDu, X., Feng, Y., Olarescu, A., Chen, Y., & Liu, X. (2025). Preparation and Properties of Composite Coatings Fabricated from Carved Lacquer Waste and Waterborne Acrylic Resin. Coatings, 15(10), 1230. https://doi.org/10.3390/coatings15101230

