Two-Dimensional Crystal Growth of MoS2 Thin Films from Sodium Dodecyl Sulfate Micellar Solutions and Wettability Between Solution and Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Neto, A.H.C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed]
- Seravalli, L.; Bosi, M. A Review on Chemical Vapour Deposition of Two-Dimensional MoS2 Flakes. Materials 2021, 14, 7590. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.V.; Losurdo, M.; Giangregorio, M.M.; Sacchetti, A.; Prete, P.; Lovergine, N.; Capezzuto, P.; Bruno, G. Direct epitaxial CVD synthesis of tungsten disulfide on epitaxial and CVD graphene. RSC Adv. 2015, 5, 98700–98708. [Google Scholar] [CrossRef]
- Yoon, Y.; Ganapathi, K.; Salahuddin, S. How Good Can Monolayer MoS2 Transistors Be? Nano Lett. 2011, 11, 3768–3773. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically ThinMoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G.; Sun, Y.; Yang, Y.; Ren, T.-L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, X.; Shin, H.-J.; Park, S.; Huang, Y.; Duan, X. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43–53. [Google Scholar] [CrossRef]
- Desai, S.B.; Madhvapathy, S.R.; Sachid, A.B.; Llinas, J.P.; Wang, Q.; Ahn, G.H.; Pitner, G.; Kim, M.J.; Bokor, J.; Hu, C.; et al. MoS 2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Kim, P.; Kim, J.H.; Ye, J.H.; Kim, S.; Lee, C.J. Large-Area Atomically Thin MoS2 Nanosheets Prepared Using Electrochemical Exfoliation. ACS Nano 2014, 8, 6902–6910. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Y.; Zhang, Y.; Ma, D.; Wei, W.; Ji, Q.; Zhang, Y.; Song, X.; Gao, T.; Li, C.; et al. Monolayer MoS2 Growth on Au Foils and On-Site Domain Boundary Imaging. Adv. Funct. Mater. 2014, 25, 842–849. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2and WSe2Nanosheets. Accounts Chem. Res. 2014, 47, 1067–1075. [Google Scholar] [CrossRef]
- Cheng, Q.; Pang, J.; Sun, D.; Wang, J.; Zhang, S.; Liu, F.; Chen, Y.; Yang, R.; Liang, N.; Lu, X.; et al. WSe2 2D p-type semiconductor-based electronic devices for information technology: Design, preparation, and applications. InfoMat 2020, 2, 656–697. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, T.; Ryu, G.H.; Huang, H.; Sheng, Y.; Chang, R.-J.; Warner, J.H. Self-Limiting Growth of High-Quality 2D Monolayer MoS2 by Direct Sulfurization Using Precursor-Soluble Substrates for Advanced Field-Effect Transistors and Photodetectors. ACS Appl. Nano Mater. 2018, 2, 369–378. [Google Scholar] [CrossRef]
- Wang, Q.; Li, N.; Tang, J.; Zhu, J.; Zhang, Q.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y.; et al. Wafer-Scale Highly Oriented Monolayer MoS2 with Large Domain Sizes. Nano Lett. 2020, 20, 7193–7199. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liao, M.; Zhao, W.; Liu, G.; Zhou, X.J.; Wei, Z.; Xu, X.; Liu, K.; Hu, Z.; Deng, K.; et al. Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. ACS Nano 2017, 11, 12001–12007. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.; Singh, R.; Dubey, M.; Pandey, S.K.; Upadhyay, S.N.; Kumar, V.; Sriram, S.; Htay, M.T.; Pakhira, S.; Atuchin, V.V.; et al. Large and Uniform Single Crystals of MoS2 Monolayers for ppb-Level NO2 Sensing. ACS Appl. Nano Mater. 2022, 5, 9415–9426. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, C.; Arabale, G.; Lee, C.; Kim, T. Synthesis of MoS2 Atomic Layer using PECVD. ECS Trans. 2013, 58, 47–50. [Google Scholar] [CrossRef]
- Ahn, C.; Lee, J.; Kim, H.; Bark, H.; Jeon, M.; Ryu, G.H.; Lee, Z.; Yeom, G.Y.; Kim, K.; Jung, J.; et al. Low-Temperature Synthesis of Large-Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasma-Enhanced Chemical Vapor Deposition. Adv. Mater. 2015, 27, 5223–5229. [Google Scholar] [CrossRef] [PubMed]
- Bala, A.; Liu, N.; Sen, A.; Cho, Y.; Pujar, P.; So, B.; Kim, S. Low-Temperature Plasma-Assisted Growth of Large-Area MoS2 for Transparent Phototransistors. Adv. Funct. Mater. 2022, 32, 2205106. [Google Scholar] [CrossRef]
- Choi, J.; Ha, M.; Park, J.C.; Park, T.J.; Kim, W.; Lee, M.; Ahn, J. A Strategy for Wafer-Scale Crystalline MoS2 Thin Films with Controlled Morphology Using Pulsed Metal–Organic Chemical Vapor Deposition at Low Temperature. Adv. Mater. Interfaces 2021, 9, 2101785. [Google Scholar] [CrossRef]
- Mun, J.; Park, H.; Park, J.; Joung, D.; Lee, S.-K.; Leem, J.; Myoung, J.-M.; Park, J.; Jeong, S.-H.; Chegal, W.C.; et al. High-Mobility MoS2 Directly Grown on Polymer Substrate with Kinetics-Controlled Metal–Organic Chemical Vapor Deposition. ACS Appl. Electron. Mater. 2019, 1, 608–616. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Zhou, C. Review of Chemical Vapor Deposition of Graphene and Related Applications. Acc. Chem. Res. 2013, 46, 2329–2339. [Google Scholar] [CrossRef]
- Cun, H.; Macha, M.; Kim, H.; Liu, K.; Zhao, Y.; LaGrange, T.; Kis, A.; Radenovic, A. Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 2019, 12, 2646–2652. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, X.; Song, J.; Gao, Q.; Li, S.; Hu, Q.; Li, X.; Wu, Y. High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Appl. Phys. Lett. 2018, 113, 202103. [Google Scholar] [CrossRef]
- Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H.; et al. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett. 2012, 12, 1538–1544. [Google Scholar] [CrossRef]
- Chang, M.-C.; Ho, P.-H.; Tseng, M.-F.; Lin, F.-Y.; Hou, C.-H.; Lin, I.-K.; Wang, H.; Huang, P.-P.; Chiang, C.-H.; Yang, Y.-C.; et al. Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lovergine, N.; Cingolani, R.; Mancini, A.; Ferrara, M. Photoluminescence of CVD grown CdS epilayers on CdTe substrates. J. Cryst. Growth 1992, 118, 304–308. [Google Scholar] [CrossRef]
- Lovergine, N.; Liaci, L.; Ganière, J.-D.; Leo, G.; Drigo, A.V.; Romanato, F.; Mancini, A.M.; Vasanelli, L. Inhomogeneous strain relaxation and defect distribution of ZnTe layers deposited on (100)GaAs by metalorganic vapor phase epitaxy. J. Appl. Phys. 1995, 78, 229–235. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, H.; Zou, G.; Zhang, W.; Chai, R.; Choi, J.; Wu, J.; Liu, H.; Shen, G.; Fan, H. MoS2–OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS2 on Arbitrary Substrates. J. Am. Chem. Soc. 2019, 141, 5392–5401. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ovchinnikov, D.; Deiana, D.; Unuchek, D.; Kis, A. Suppressing Nucleation in Metal–Organic Chemical Vapor Deposition of MoS2 Monolayers by Alkali Metal Halides. Nano Lett. 2017, 17, 5056–5063. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lei, J.; Qu, J.; Cao, S.; Jiang, H.; He, M.; Shi, H.; Sun, X.; Gao, B.; Liu, W. Mechanism of Alkali Metal Compound-Promoted Growth of Monolayer MoS2: Eutectic Intermediates. Chem. Mater. 2019, 31, 873–880. [Google Scholar] [CrossRef]
- Singh, A.; Moun, M.; Sharma, M.; Barman, A.; Kapoor, A.K.; Singh, R. NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2. Appl. Surf. Sci. 2020, 538, 148201. [Google Scholar] [CrossRef]
- Kwack, Y.-J.; Can, T.T.T.; Choi, W.-S. Bottom-up water-based solution synthesis for a large MoS2 atomic layer for thin-film transistor applications. npj 2D Mater. Appl. 2021, 5, 1–8. [Google Scholar] [CrossRef]
- Esposito, F.; Bosi, M.; Attolini, G.; Rossi, F.; Panasci, S.; Fiorenza, P.; Giannazzo, F.; Fabbri, F.; Seravalli, L. Role of density gradients in the growth dynamics of 2-dimensional MoS2 using liquid phase molybdenum precursor in chemical vapor deposition. Appl. Surf. Sci. 2023, 639, 158230. [Google Scholar] [CrossRef]
- Ye, W.; Ma, C.; Shang, W.; Chen, Y.; Wang, R.; Wang, C. Effect of sodium dodecylsulfate on improving microstructural properties of electroplated silver–oxygen–tungsten thin films. Surf. Coatings Technol. 2007, 201, 9456–9461. [Google Scholar] [CrossRef]
- Sciscenko, I.; Pedre, I.; Hunt, A.; Bogo, H.; González, G. Determination of a typical additive in zinc electroplating baths. Microchem. J. 2016, 127, 226–230. [Google Scholar] [CrossRef]
- Reid, J.D.; Zhou, J. Impact of Leveler Molecular Weight and Concentration on Damascene Copper Electroplating. ECS Trans. 2007, 2, 77–92. [Google Scholar] [CrossRef]
- Lin, C.; Liu, Y.; Zhang, X.; Miao, X.; Chen, Y.; Chen, S.; Zhang, Y. Regulating the plating process of zinc with highly efficient additive for long-life zinc anode. J. Power Sources 2022, 549, 232078. [Google Scholar] [CrossRef]
- Leo, S.; Tallon, C.; Stone, N.; Franks, G.V. Near-Net-Shaping Methods for Ceramic Elements of (Body) Armor Systems. J. Am. Ceram. Soc. 2014, 97, 3013–3033. [Google Scholar] [CrossRef]
- Mori, T.; Kitagawa, R. Experimental study on the time change in fluidity and particle dispersion state of alumina slurries with and without sintering aid. Ceram. Int. 2017, 43, 13422–13429. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, Y.; Sato, K.; Niu, J.; Chokradjaroen, C.; Sawada, Y.; Saito, N. Few-Layer MoS2 on a SiO2/Si Wafer through Sulfurization Chemical Vapor Deposition with a Vaporization-Shadowing Effect. ACS Appl. Nano Mater. 2024, 7, 20257–20266. [Google Scholar] [CrossRef]
- Kalt, R.A.; Arcifa, A.; Wäckerlin, C.; Stemmer, A. CVD of MoS2 single layer flakes using Na2MoO4 – impact of oxygen and temperature–time-profile. Nanoscale 2023, 15, 18871–18882. [Google Scholar] [CrossRef] [PubMed]
- Nivón-Ramírez, D.; Reyes-García, L.I.; Oviedo-Roa, R.; Gómez-Balderas, R.; Zuriaga-Monroy, C.; Martínez-Magadán, J.-M. Critical Micelle Concentration of SDS Through DPD Simulations Using COSMO-RS–Based Interaction Parameters, the Thermal Effects. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128867. [Google Scholar] [CrossRef]
- Bahri, M.A.; Hoebeke, M.; Grammenos, A.; Delanaye, L.; Vandewalle, N.; Seret, A. Investigation of SDS, DTAB and CTAB micelle microviscosities by electron spin resonance. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 290, 206–212. [Google Scholar] [CrossRef]
- Sugimura, H.; Saito, N.; Maeda, N.; Ikeda, I.; Ishida, Y.; Hayashi, K.; Hong, L.; Takai, O. Surface potential microscopy for chemistry of organic self-assembled monolayers in small domains. Nanotechnology 2004, 15, S69–S75. [Google Scholar] [CrossRef]
- Kumar, N.; Varanasi, K.; Tilton, R.D.; Garoff, S. Surfactant Self-Assembly ahead of the Contact Line on a Hydrophobic Surface and Its Implications for Wetting. Langmuir 2003, 19, 5366–5373. [Google Scholar] [CrossRef]
- Frank, B.; Garoff, S. Surfactant self-assembly near contact lines: Control of advancing surfactant solutions. Colloids Surfaces A Physicochem. Eng. Asp. 1996, 116, 31–42. [Google Scholar] [CrossRef]
- Starov, V.; Ivanova, N.; Rubio, R.G. Why do aqueous surfactant solutions spread over hydrophobic substrates? Adv. Colloid Interface Sci. 2010, 161, 153–162. [Google Scholar] [CrossRef]
- Penta, N.K.; Amanapu, H.; Peethala, B.; Babu, S. Use of anionic surfactants for selective polishing of silicon dioxide over silicon nitride films using colloidal silica-based slurries. Appl. Surf. Sci. 2013, 283, 986–992. [Google Scholar] [CrossRef]
- Starov, V.M.; Kosvintsev, S.R.; Velarde, M.G. Spreading of Surfactant Solutions over Hydrophobic Substrates. J. Colloid Interface Sci. 2000, 227, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Xu, W.W.; Zhang, Y.; Wang, Z.; Wang, X.; Gao, Y.; Liu, P.; Chen, M. Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Panasci, S.E.; Schilirò, E.; Greco, G.; Cannas, M.; Gelardi, F.M.; Agnello, S.; Roccaforte, F.; Giannazzo, F. Strain, Doping, and Electronic Transport of Large Area Monolayer MoS2 Exfoliated on Gold and Transferred to an Insulating Substrate. ACS Appl. Mater. Interfaces 2021, 13, 31248–31259. [Google Scholar] [CrossRef] [PubMed]
SDS Concentration (mol/L) | DI Water | 3.5 × 10−5 | 1.7 × 10−4 | 3.5 × 10−4 | 6.9 × 10−4 | 3.5 × 10−3 |
---|---|---|---|---|---|---|
Coverage | 40.5% | 49.9% | 82.1% | 85.1% | 92.8% | 76.9% |
Na2MoO4·2H2O Concentration (mol/L) | DI Water | 8.3 × 10−3 | 1.7 × 10−2 | 2.5 × 10−2 | 4.1 × 10−2 | 8.3 × 10−2 |
---|---|---|---|---|---|---|
Coverage | 40.5% | 24.0% | 85.1% | 98.6% | 88.4% | 95.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Liu, Y.; Sawada, Y.; Saito, N. Two-Dimensional Crystal Growth of MoS2 Thin Films from Sodium Dodecyl Sulfate Micellar Solutions and Wettability Between Solution and Substrate. Coatings 2025, 15, 4. https://doi.org/10.3390/coatings15010004
Zhu Z, Liu Y, Sawada Y, Saito N. Two-Dimensional Crystal Growth of MoS2 Thin Films from Sodium Dodecyl Sulfate Micellar Solutions and Wettability Between Solution and Substrate. Coatings. 2025; 15(1):4. https://doi.org/10.3390/coatings15010004
Chicago/Turabian StyleZhu, Zhunda, Yuanyuan Liu, Yasuyuki Sawada, and Nagahiro Saito. 2025. "Two-Dimensional Crystal Growth of MoS2 Thin Films from Sodium Dodecyl Sulfate Micellar Solutions and Wettability Between Solution and Substrate" Coatings 15, no. 1: 4. https://doi.org/10.3390/coatings15010004
APA StyleZhu, Z., Liu, Y., Sawada, Y., & Saito, N. (2025). Two-Dimensional Crystal Growth of MoS2 Thin Films from Sodium Dodecyl Sulfate Micellar Solutions and Wettability Between Solution and Substrate. Coatings, 15(1), 4. https://doi.org/10.3390/coatings15010004