A Wideband Polarization-Insensitive Bistatic Radar Cross-Section Reduction Design Based on Hybrid Spherical Phase-Chessboard Metasurfaces
Abstract
:1. Introduction
2. The Design of the Wideband Metasurface
3. The RCS-Reduction Designs
4. Fabrication and Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef]
- Ziolkowski, R.W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2004, 70, 046608. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, C.; Grbic, A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 2013, 110, 197401. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, W.; Chen, H.; Konneker, A.; Popa, B.-I.; Cummer, S.A. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 2014, 5, 5553. [Google Scholar] [CrossRef]
- Zhu, H.; Cheung, S.; Chung, K.L.; Yuk, T.I. Linear-to-circular polarization conversion using metasurface. IEEE Trans. Antennas Propag. 2013, 61, 4615–4623. [Google Scholar] [CrossRef]
- Lawrence, N.; Trevino, J.; Dal Negro, L. Aperiodic arrays of active nanopillars for radiation engineering. J. Appl. Phys. 2012, 111, 113101. [Google Scholar] [CrossRef]
- Wang, S.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Chen, M.-K.; Kuo, H.Y.; Chen, B.H.; Chen, Y.H.; Huang, T.-T.; Wang, J.-H. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 2018, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Zheng, B.; Shen, Y.; Jing, L.; Li, E.; Shen, L.; Chen, H. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics 2020, 14, 383–390. [Google Scholar] [CrossRef]
- Yao, Y.; Shankar, R.; Kats, M.A.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 2014, 14, 6526–6532. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Xiao, X.; Geng, G.; Li, X.; Li, J.; Li, X.; Wang, Y.; Huang, L. Polarization and Holography Recording in Real-and k-Space Based on Dielectric Metasurface. Adv. Funct. Mater. 2021, 31, 2100406. [Google Scholar] [CrossRef]
- Paquay, M.; Iriarte, J.C.; Ederra, I.; Gonzalo, R.; de Maagt, P. Thin AMC structure for radar cross-section reduction. IEEE Trans. Antennas Propag. 2007, 55, 3630–3638. [Google Scholar] [CrossRef]
- Galarregui, J.C.I.; Pereda, A.T.; De Falcon, J.L.M.; Ederra, I.; Gonzalo, R.; de Maagt, P. Broadband radar cross-section reduction using AMC technology. IEEE Trans. Antennas Propag. 2013, 61, 6136–6143. [Google Scholar] [CrossRef]
- Chen, W.; Balanis, C.A.; Birtcher, C.R. Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Trans. Antennas Propag. 2015, 63, 2636–2645. [Google Scholar] [CrossRef]
- Modi, A.Y.; Balanis, C.A.; Birtcher, C.R.; Shaman, H.N. Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors. IEEE Trans. Antennas Propag. 2017, 65, 5406–5417. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Y.; Gong, S.; Zhang, W.; Liao, G. A low-RCS and high-gain circularly polarized antenna with a low profile. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2477–2480. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, C.; Gao, J.; Yao, X.; Liu, T.; Li, W.; Li, S. Broadband metamaterial surface for antenna RCS reduction and gain enhancement. IEEE Trans. Antennas Propag. 2015, 1, 1. [Google Scholar] [CrossRef]
- Al-Nuaimi, M.K.T.; Hong, W.; He, Y. Design of diffusive modified chessboard metasurface. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1621–1625. [Google Scholar] [CrossRef]
- Murugesan, A.; Natarajan, D.; Selvan, K.T. Low-cost, wideband checkerboard metasurfaces for monostatic RCS reduction. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 493–497. [Google Scholar] [CrossRef]
- El-Sewedy, M.F.; Abdalla, M.A. A monostatic and bistatic RCS reduction using artificial magnetic conductor metasurface. IEEE Trans. Antennas Propag. 2022, 71, 1988–1992. [Google Scholar] [CrossRef]
- Koziel, S.; Abdullah, M.; Szczepanski, S. Design of high-performance scattering metasurfaces through optimization-based explicit RCS reduction. IEEE Access 2021, 9, 113077–113088. [Google Scholar] [CrossRef]
- Gu, P.; Cao, Z.; He, Z.; Ding, D. Design of ultrawideband RCS reduction metasurface using space mapping and phase cancellation. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1386–1390. [Google Scholar] [CrossRef]
- Fu, C.; Han, L.; Liu, C.; Lu, X.; Sun, Z. Combining Pancharatnam–Berry phase and conformal coding metasurface for dual-band RCS reduction. IEEE Trans. Antennas Propag. 2021, 70, 2352–2357. [Google Scholar] [CrossRef]
- Deng, G.Y.; Zhang, Y.H.; He, S.Y.; Yan, H.; Yin, H.C.; Gao, H.T.; Zhu, G.-Q. Ultrabroadband RCS reduction design by exploiting characteristic complementary polarization conversion metasurfaces. IEEE Trans. Antennas Propag. 2021, 70, 2904–2914. [Google Scholar] [CrossRef]
- Lu, Y.; Su, J.; Liu, J.; Guo, Q.; Yin, H.; Li, Z.; Song, J. Ultrawideband monostatic and bistatic RCS reductions for both copolarization and cross polarization based on polarization conversion and destructive interference. IEEE Trans. Antennas Propag. 2019, 67, 4936–4941. [Google Scholar] [CrossRef]
- Li, J.S.; Yao, J.Q. Manipulation of terahertz wave using coding Pancharatnam–Berry phase metasurface. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Abdullah, M.; Koziel, S. Supervised-learning-based development of multibit RCS-reduced coding metasurfaces. IEEE Trans. Microw. Theory Tech. 2021, 70, 264–274. [Google Scholar] [CrossRef]
- Al-Nuaimi, M.K.T.; Huang, G.-L.; Whittow, W.G.; Wang, D.; Chen, R.-S.; Wong, S.-W.; Tam, K.-W. Coding engineered reflector for wide-band RCS reduction under wide angle of incidence. IEEE Trans. Antennas Propag. 2022, 70, 9947–9952. [Google Scholar] [CrossRef]
- Deng, G.Y.; Zhang, Y.H.; Gao, H.T.; Shu, Y.L.; He, S.Y.; Zhu, G.-Q. A Super Diffuse Broadband RCS Reduction Surface Design Based on Rotated Phase Coding Polarization Conversion Metasurfaces. IEEE Trans. Antennas Propag. 2023, 71, 7409–7417. [Google Scholar] [CrossRef]
- Berry, M.V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 1987, 34, 1401–1407. [Google Scholar] [CrossRef]
- Edalati, A.; Sarabandi, K. Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces. IEEE Trans. Antennas Propag. 2013, 62, 747–754. [Google Scholar] [CrossRef]
- Liu, X.; Gao, J.; Xu, L.; Cao, X.; Zhao, Y.; Li, S. A coding diffuse metasurface for RCS reduction. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 724–727. [Google Scholar] [CrossRef]
- Han, X.; Xu, H.; Chang, Y.; Lin, M.; Wenyuan, Z.; Wu, X.; Wei, X. Multiple diffuse coding metasurface of independent polarization for RCS reduction. IEEE Access 2020, 8, 162313–162321. [Google Scholar] [CrossRef]
- Kim, S.H.; Yoon, Y.J. Wideband radar cross-section reduction on checkerboard metasurfaces with surface wave suppression. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 896–900. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.-Y.; Zhou, S.-G. Polarization conversion metamaterial surface with staggered-arrangement structure for broadband radar cross section reduction. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 871–875. [Google Scholar] [CrossRef]
- Shao, L.; Premaratne, M.; Zhu, W. Dual-functional coding metasurfaces made of anisotropic all-dielectric resonators. IEEE Access 2019, 7, 45716–45722. [Google Scholar] [CrossRef]
Refs. | 10 dB RCSR BW (GHz, %) | h (mm) | Angular Stability RCSR θin | Working Polarization | With/Without Optimization |
---|---|---|---|---|---|
[32] | 9.3–15.5 (50%) Monostatic | 3.3 | LP | Without | |
[33] | 5.4–7.4 (31.2%) Bistatic | 3 | LP | With | |
[34] | 6.9–9.2 (28.3%) Monostatic | 2 | LP | With | |
[35] | 8–15.8 (68.6%) Monostatic | 3.17 | LP | Without | |
[36] | 9–16 (56%) Monostatic | 2 | N.A. | LP | Without |
[37] | 3.9–4.05 (3.8%) Monostatic | 2 | N.A. | LP | With |
This work | 8.5–21 (84.8%) Monostatic, bistatic | 3 | LP/CP | Without |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Qin, Q.; Hua, M. A Wideband Polarization-Insensitive Bistatic Radar Cross-Section Reduction Design Based on Hybrid Spherical Phase-Chessboard Metasurfaces. Coatings 2024, 14, 1130. https://doi.org/10.3390/coatings14091130
Zhang S, Qin Q, Hua M. A Wideband Polarization-Insensitive Bistatic Radar Cross-Section Reduction Design Based on Hybrid Spherical Phase-Chessboard Metasurfaces. Coatings. 2024; 14(9):1130. https://doi.org/10.3390/coatings14091130
Chicago/Turabian StyleZhang, Shun, Qin Qin, and Mengbo Hua. 2024. "A Wideband Polarization-Insensitive Bistatic Radar Cross-Section Reduction Design Based on Hybrid Spherical Phase-Chessboard Metasurfaces" Coatings 14, no. 9: 1130. https://doi.org/10.3390/coatings14091130
APA StyleZhang, S., Qin, Q., & Hua, M. (2024). A Wideband Polarization-Insensitive Bistatic Radar Cross-Section Reduction Design Based on Hybrid Spherical Phase-Chessboard Metasurfaces. Coatings, 14(9), 1130. https://doi.org/10.3390/coatings14091130