Study on the Characteristics and Mechanism of Shield Tunnel Mud Cake Disintegration in Complex Red-Bed Geology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Sample of Mud Cake
2.1.2. Dispersants
2.2. Specimens
2.3. Experimental Methods
2.3.1. Disintegration Mechanism
2.3.2. Design of Disintegration Experiment
3. Results
3.1. Disintegration of Mud Cake Samples in Pure Water
3.2. Disintegration of Mud Cake Samples in Sodium Silicate Solution
3.3. Disintegration of Mud Cake Samples in Oxalic Acid Solution
3.4. Disintegration of Mud Cake Samples in Sodium Hexametaphosphate Solution
3.5. Recommended Dispersant Concentration
3.6. Engineering Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heuser, M.; Spagnoli, G.; Leroy, P.; Klitzsch, N.; Stanjek, H. Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving. Bull. Eng. Geol. Environ. 2012, 71, 721–733. [Google Scholar] [CrossRef]
- Khabbazi, A.; Ghafoori, M.; Tarigh Azali, S.; Cheshomi, A. Experimental and laboratory assessment of clogging potential based on adhesion. Bull. Eng. Geol. Environ. 2019, 78, 605–616. [Google Scholar] [CrossRef]
- Basmenj, A.K.; Ghafoori, M.; Cheshomi, A.; Azandariani, Y.K. Adhesion of clay to metal surface; Normal and tangential measurement. Geomech. Eng. 2016, 10, 125–135. [Google Scholar] [CrossRef]
- Wang, R.; Xu, H.; Liu, Y.; Jiang, P.; Zhou, A. Reusing Fine Silty Sand Excavated from Slurry Shield Tunnels as a Sustainable Raw Material for Synchronous Grouting. Coatings 2023, 13, 398. [Google Scholar] [CrossRef]
- Djeran-Maigre, I.; Dubujet, P.; Vogel, T.M. Variation over time of excavated soil properties treated with surfactants. Environ. Earth Sci. 2018, 77, 67. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Lin, C.G.; Wu, S.M. Slurry shield tunnelling in clayey soils: Typical problems and countermeasures. Adv. Mater. Res. 2011, 243, 2944–2947. [Google Scholar] [CrossRef]
- Umar, I.H.; Lin, H.; Ibrahim, A.S. Laboratory Testing and Analysis of Clay Soil Stabilization Using Waste Marble Powder. Appl. Sci. 2023, 13, 9274. [Google Scholar] [CrossRef]
- Sousa, R.L.; Einstein, H.H. Lessons from accidents during tunnel construction. Tunn. Undergr. Space Technol. 2021, 113, 103916. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Fahimifar, A.; Ghaleini, E.N.; Momenzadeh, M.; Armaghani, D.J. Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance. Eng. Comput. 2020, 36, 345–357. [Google Scholar] [CrossRef]
- Alija, S.; Torrijo, F.; Quinta-Ferreira, M. Geological engineering problems associated with tunnel construction in karst rock masses: The case of Gavarres tunnel (Spain). Eng. Geol. 2013, 157, 103–111. [Google Scholar] [CrossRef]
- Farrokh, E.; Kim, D.Y. A discussion on hard rock TBM cutter wear and cutterhead intervention interval length evaluation. Tunn. Undergr. Space Technol. 2018, 81, 336–357. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Q.; Zhi, W.; Shao, G.; Liu, P. Long-Distance Freezing Design and Construction Based on Monitoring Analysis of Subway Connection Aisle. Coatings 2024, 14, 355. [Google Scholar] [CrossRef]
- Mei, Y.; Zhou, D.; Gong, H.; Ke, X.; Xu, W.; Shi, W. Study on comprehensive technology of preventing mud cake of large diameter slurry shield in composite stratum. Buildings 2022, 12, 1555. [Google Scholar] [CrossRef]
- Tsubaki, J.; Mori, T.; Tseveen, U.; Bayanjargal, O. Development of a novel slurry condensation method by applying dispersant instead of flocculant. Adv. Powder Technol. 2009, 20, 106–110. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Wan, Z.; Wang, M. Dispersant for reducing mud cakes of slurry shield tunnel boring machine in sticky ground. Adv. Mater. Sci. Eng. 2021, 2021, 5524489. [Google Scholar] [CrossRef]
- Langmaack, L. Advanced technology of soil conditioning in EPB shield tunnelling. Proc. N. Am. Tunneling 2000, 2000, 525–542. [Google Scholar]
- Langmaack, L. Europe & Asia: Application of new TBM conditioning additives. In Proceedings of the BAUMA 2001, Munich, Germany, 2–8 April 2001; Volume 3, pp. 88–92. [Google Scholar]
- Martinotto, A.; Langmaack, L. Toulouse Metro Lot 2: Soil conditioning in difficult ground conditions. In Proceedings of the ITA-AITES World Tunnel Congress, Prague, Czech Republic, 5–10 June 2007; pp. 1211–1216. [Google Scholar]
- Wang, S.; Liu, P.; Hu, Q.; Zhong, J. Effect of dispersant on the tangential adhesion strength between clay and metal for EPB shield tunnelling. Tunn. Undergr. Space Technol. 2020, 95, 103144. [Google Scholar] [CrossRef]
- Zumsteg, R.; Puzrin, A.M.; Anagnostou, G. Effects of slurry on stickiness of excavated clays and clogging of equipment in fluid supported excavations. Tunn. Undergr. Space Technol. 2016, 58, 197–208. [Google Scholar] [CrossRef]
- de Oliveira, D.G.; Thewes, M.; Diederichs, M.S. Clogging and flow assessment of cohesive soils for EPB tunnelling: Proposed laboratory tests for soil characterisation. Tunn. Undergr. Space Technol. 2019, 94, 103110. [Google Scholar] [CrossRef]
- Thewes, M.; Budach, C. Parameters for soil conditioning with foam in coarse-grained soils with epb-shields. In Proceedings of the World Tunnel Congress, Vancouver, BC, Canada, 14–20 May 2010. [Google Scholar]
- Thewes, M.; Budach, C.; Bezuijen, A. Foam conditioning in EPB tunnelling. In Geotechnical Aspects of Underground Construction in Soft Ground; CRC Press: Boca Raton, FL, USA, 2012; Volume 127. [Google Scholar]
- Zumsteg, R.; Plötze, M.; Puzrin, A.M. Effect of soil conditioners on the pressure and rate-dependent shear strength of different clays. J. Geotech. Geoenvironmental Eng. 2012, 138, 1138–1146. [Google Scholar] [CrossRef]
- Feinendegen, M.; Ziegler, M.; Spagnoli, G.; Fernández-Steeger, T. Evaluation of the clogging potential in mechanical tunnel driving with EPB-shields. In Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 12–15 September; 2011; pp. 1633–1638. [Google Scholar]
- Feinendegen, M.; Ziegler, M.; Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H. A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with EPB-shields. In Rock Mechanics in Civil and Environmental Engineering; CRC Press: Boca Raton, FL, USA, 2010; pp. 429–432. [Google Scholar]
- Spagnoli, G.; Feinendegen, M.; Rubinos, D. Modification of clay adhesion to improve tunnelling excavation. Proc. Inst. Civ. Eng. Ground Improv. 2013, 166, 21–31. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, J.; Feng, T.; Liang, Y.; Yin, Y. Mechanism and Influence of Dispersants on the Action of Polymer Flocculants Used in Slurry Separation. Polymers 2023, 15, 4073. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, D. Research and Experimental Application of New Slurry Proportioning for Slag Improvement of EPB Shield Crossing Sand and Gravel Layer. Coatings 2022, 12, 1961. [Google Scholar] [CrossRef]
- Grassi, R.; Daghetti, A.; Trasatti, S. Application of the Gouy-Chapman-Stern-Grahame model of the electrical double layer to the determination of single ion activities of KF aqueous solutions. J. Electroanal. Chem. Interfacial Electrochem. 1987, 226, 341–349. [Google Scholar] [CrossRef]
- Rehl, B.; Ma, E.; Parshotam, S.; DeWalt-Kerian, E.L.; Liu, T.; Geiger, F.M.; Gibbs, J.M. Water structure in the electrical double layer and the contributions to the total interfacial potential at different surface charge densities. J. Am. Chem. Soc. 2022, 144, 16338–16349. [Google Scholar] [CrossRef]
- Li, Y.; Weng, L.; Wu, L.; Gong, H.; Zhang, Y.; Zhang, R.; Shen, J.; Yin, Y.; Alves, M.E.; Zhou, D. Combining multisurface model and Gouy–Chapman–Stern model to predict cadmium uptake by cabbage (Brassica Chinensis L.) in soils. J. Hazard. Mater. 2021, 416, 126260. [Google Scholar] [CrossRef]
- Chan, D.Y.; Healy, T.W.; Supasiti, T.; Usui, S. Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern–Grahame layers. J. Colloid Interface Sci. 2006, 296, 150–158. [Google Scholar] [CrossRef]
Moisture Content (%) | Natural Moisture Content (%) | Density (g/cm3) | Dry Density (g/cm3) |
---|---|---|---|
15.13 | 36.5 | 2.06 | 1.79 |
Silt Clastic | Silt Particle | Clay Mineral | Limonite | Sericite | Microcrystalline Calcite |
---|---|---|---|---|---|
25% | 20% | 35% | 6% | 1% | 13% |
Specimens | Percentage of Dispersant (%) | Thickness of Mud Cake (cm) | Initial Moisture Content of Mud Cake (%) | Explanation |
---|---|---|---|---|
PW-T1 | / | 1 | 15.13% | Pure water |
PW-T3 | / | 3 | 15.13% | |
PW-T5 | / | 5 | 15.13% | |
SS-P2 | 2% | 3 | 15.13% | Sodium silicate solutions with different concentrations |
SS-P4 | 4% | 3 | 15.13% | |
SS-P6 | 6% | 3 | 15.13% | |
SS-P8 | 8% | 3 | 15.13% | |
OA-T3-P5 | 5% | 3 | 15.13% | Oxalic acid solutions with different concentrations |
OA-T3-P10 | 10% | 3 | 15.13% | |
OA-T3-P15 | 15% | 3 | 15.13% | |
SH-T3-P2 | 2% | 3 | 15.13% | Sodium hexametaphosphate solutions with different concentrations |
SH-T3-P4 | 4% | 3 | 15.13% | |
SH-T3-P6 | 6% | 3 | 15.13% | |
SH-T3-P8 | 8% | 3 | 15.13% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Xue, X.; Gong, C.; Zhang, K. Study on the Characteristics and Mechanism of Shield Tunnel Mud Cake Disintegration in Complex Red-Bed Geology. Coatings 2024, 14, 567. https://doi.org/10.3390/coatings14050567
Yan J, Xue X, Gong C, Zhang K. Study on the Characteristics and Mechanism of Shield Tunnel Mud Cake Disintegration in Complex Red-Bed Geology. Coatings. 2024; 14(5):567. https://doi.org/10.3390/coatings14050567
Chicago/Turabian StyleYan, Jinshuo, Xingwei Xue, Chaofan Gong, and Kexin Zhang. 2024. "Study on the Characteristics and Mechanism of Shield Tunnel Mud Cake Disintegration in Complex Red-Bed Geology" Coatings 14, no. 5: 567. https://doi.org/10.3390/coatings14050567
APA StyleYan, J., Xue, X., Gong, C., & Zhang, K. (2024). Study on the Characteristics and Mechanism of Shield Tunnel Mud Cake Disintegration in Complex Red-Bed Geology. Coatings, 14(5), 567. https://doi.org/10.3390/coatings14050567