Exploring the Relationship Between Electrical Characteristics and Changes in Chemical Composition and Structure of OSG Low-K Films Under Thermal Annealing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis
3. Results and Discussions
3.1. Chemical Composition
3.2. Spectroscopic Ellipsometry (SE) and Ellipsometric Porometry (EP) Data
3.3. Electrical Properties
3.4. Discussion of the Leakage Mechanism
3.4.1. Verification of NG Model
3.4.2. Verification of SE and PF Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohr, M.T. Interconnect scaling—The real limiter to high performance ULSI. Solid State Technol. 1996, 39, 105–111. [Google Scholar] [CrossRef]
- Shamiryan, D.; Abell, T.; Iacopi, F.; Maex, K. Low–k dielectric materials. Mater. Today 2004, 7, 34–39. [Google Scholar] [CrossRef]
- Soulié, J.P.; Sankaran, K.; Van Troeye, B.; Leśniewska, A.; Pedreira, O.V.; Oprins, H.; Delie, G.; Fleischmann, C.; Boakes, L.; Rolin, C.; et al. Selecting Alternative Metals for Advanced Interconnects. arXiv 2024, arXiv:2406.09106. [Google Scholar] [CrossRef]
- Havemann, R.H.; Hutchby, J.A. High-performance interconnects: An integration overview. Proc. IEEE 2001, 89, 586–601. [Google Scholar] [CrossRef]
- Shacham-Diamand, Y.; Osaka, T.; Datta, M.; Ohba, T. (Eds.) Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications; Springer Science & Business Media: Berlin, Germany, 2009; p. 435. Available online: https://link.springer.com/book/10.1007/978-0-387-95868-2 (accessed on 5 September 2024).
- Moon, J.H.; Jeong, E.; Kim, S.; Kim, T.; Oh, E.; Lee, K.; Han, H.; Kim, Y.K. Materials quest for advanced interconnect metallization in integrated circuits. Adv. Sci. 2023, 10, 2207321. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.S.; Leu, J.; Lee, W.W. Overview on low dielectric constant materials for IC applications. In Low Dielectric Constant Materials for IC Applications; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–21. [Google Scholar]
- Volksen, W.; Miller, R.D.; Dubois, G. Low dielectric constant materials. Chem. Rev. 2010, 110, 56–110. [Google Scholar] [CrossRef] [PubMed]
- Grill, A.; Gates, S.M.; Ryan, T.E.; Nguyen, S.V.; Priyadarshini, D. Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects—State of the art. Appl. Phys. Rev. 2014, 1, 011306. [Google Scholar] [CrossRef]
- Michalak, D.J.; Blackwell, J.M.; Torres, J.M.; Sengupta, A.; Kreno, L.E.; Clarke, J.S.; Pantuso, D. Porosity scaling strategies for low-k films. J. Mater. Res. 2015, 30, 3363–3385. [Google Scholar] [CrossRef]
- Miller, R.D. In Search of Low–k Dielectrics. Science 1999, 286, 421–423. [Google Scholar] [CrossRef]
- Hatton, B.D.; Landskron, K.; Hunks, W.J.; Bennett, M.R.; Shukaris, D.; Perovic, D.D.; Ozin, G.A. Materials chemistry for low–k materials. Mater. Today 2006, 9, 22–31. [Google Scholar] [CrossRef]
- Van Der Voort, P.; Esquivel, D.; De Canck, E.; Goethals, F.; Van Driessche, I.; Romero-Salguero, F.J. Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem. Soc. Rev. 2013, 42, 3913–3955. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, M.L.; Haas, M.K.; Peterson, B.K.; Vrtis, R.N.; Weigel, S.J.; Wu, D.; Bitner, M.D.; Karwacki, E.J. Impact of pore size and morphology of porous organosilicate glasses on integrated circuit manufacturing. MRS Online Proc. Libr. 2006, 914, 3. [Google Scholar] [CrossRef]
- Gambino, J. Process Technology for Copper Interconnects. In Handbook of Thin Film Deposition, 4th ed.; William Andrew Publishing: Norwich, NY, USA, 2018; Volume 6, pp. 147–194. ISBN 9780128123119. [Google Scholar]
- Josell, D.; Baker, B.; Witt, C.; Wheeler, D.; Moffat, T.P. Via Filling by Electrodeposition. J. Electrochem. Soc. 2002, 149, 637–641. [Google Scholar] [CrossRef]
- Penny, C.; Motoyama, K.; Ghosh, S.; Bae, T.; Lanzillo, N.; Sieg, S.; Park, C.; Zou, L.; Lee, H.; Metzler, D.; et al. Subtractive Ru Interconnect Enabled by Novel Patterning Solution for EUV Double Patterning and TopVia with Embedded Airgap Integration for Post Cu Interconnect Scaling. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 12.1.1–12.1.4. [Google Scholar] [CrossRef]
- Issa, A.A.; Luyt, A.S. Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review. Polymers 2019, 11, 537. [Google Scholar] [CrossRef]
- Baklanov, M.R.; Jousseaume, V.; Rakhimova, T.V.; Lopaev, D.V.; Mankelevich, Y.A.; Afanas’ev, V.V.; Shohet, J.L.; King, S.W.; Ryan, E.T. Impact of VUV photons on SiO2 and organosilicate low-k dielectrics: General behavior, practical applications, and atomic models. Appl. Phys. Rev. 2019, 6, 011301. [Google Scholar] [CrossRef]
- Grill, A.; Neumayer, D.A. Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization. J. Appl. Phys. 2003, 94, 6697–6707. [Google Scholar] [CrossRef]
- Burkey, D.D.; Gleason, K.K. Organosilicon thin films deposited from cyclic and acyclic precursors using water as an oxidant. J. Electrochem. Soc. 2004, 151, 105–112. [Google Scholar] [CrossRef]
- Favennec, L.; Jousseaume, V.; Gerbaud, G.; Zenasni, A.; Passemard, G. Ultralow–k using a plasma enhanced chemical vapor deposition porogen approach: Matrix structure and porogen loading influences. J. Appl. Phys. 2007, 102, 064107. [Google Scholar] [CrossRef]
- Burkey, D.D.; Gleason, K.K. Structure and mechanical properties of thin films deposited from 1,3,5–trimethyl–1,3,5–trivinylcyclotrisiloxane and water. J. Appl. Phys. 2003, 93, 5143–5150. [Google Scholar] [CrossRef]
- Baklanov, M.R.; Gismatulin, A.A.; Naumov, S.; Perevalov, T.V.; Gritsenko, V.A.; Vishnevskiy, A.S.; Rakhimova, T.V.; Vorotilov, K.A. Comprehensive Review on the Impact of Chemical Composition, Plasma Treatment, and Vacuum Ultraviolet (VUV) Irradiation on the Electrical Properties of Organosilicate Films. Polymers 2024, 16, 2230. [Google Scholar] [CrossRef] [PubMed]
- Pomorski, T.A.; Bittel, B.C.; Lenahan, P.M.; Mays, E.; Ege, C.; Bielefeld, J.; Michalak, D.; King, S.W. Defect structure and electronic properties of SiOC: H films used for back end of line dielectrics. J. Appl. Phys. 2014, 115, 234508. [Google Scholar] [CrossRef]
- King, S.W.; French, B.; Mays, E. Detection of defect states in low-k dielectrics using reflection electron energy loss spectroscopy. J. Appl. Phys. 2013, 113, 044109. [Google Scholar] [CrossRef]
- Lauer, J.L.; Sinha, H.; Nichols, M.T.; Antonelli, G.A.; Nishi, Y.; Shohet, J.L. Charge trapping within UV and vacuum UV irradiated low-k porous organosilicate dielectrics. J. Electrochem. Soc. 2010, 157, G177. [Google Scholar] [CrossRef]
- Liniger, E.G.; Shaw, T.M.; Cohen, S.A.; Leung, P.K.; Gates, S.M.; Bonilla, G.; Canaperi, D.F.; Rao, S.P. Processing and moisture effects on TDDB for Cu/ULK BEOL structures. Microelectron. Eng. 2012, 92, 130–133. [Google Scholar] [CrossRef]
- Lloyd, J.R.; Shaw, T.M.; Liniger, E.G. Effect of moisture on the time dependent dielectric breakdown (TDDB) behavior in an ultra-low-k (ULK) dielectric. In Proceedings of the 2005 IEEE International Integrated Reliability Workshop, South Lake Tahoe, CA, USA, 17–20 October 2005; p. 5. [Google Scholar] [CrossRef]
- Michelon, J.; Hoofman, R.J. Moisture influence on porous low-k reliability. IEEE Trans. Device Mater. Reliab. 2006, 6, 169–174. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Leon, K.W.; Huang, J.F.; Chang, W.Y.; Chang, Y.M.; Leu, J. Effect of moisture on electrical properties and reliability of low dielectric constant materials. Microelectron. Eng. 2014, 114, 12–16. [Google Scholar] [CrossRef]
- Li, Y.; Ciofi, I.; Carbonell, L.; Heylen, N.; Van Aelst, J.; Baklanov, M.R.; Groeseneken, G.; Maex, K.; Tőkei, Z. Influence of absorbed water components on SiOCH low-k reliability. J. Appl. Phys. 2008, 104, 034113. [Google Scholar] [CrossRef]
- Krishtab, M.; Afanas’ev, V.; Stesmans, A.; De Gendt, S. Leakage current induced by surfactant residues in self-assembly based ultralow-k dielectric materials. Appl. Phys. Lett. 2017, 111, 032908. [Google Scholar] [CrossRef]
- Sze, S.M.; Li, Y.; Ng, K.K. Physics of Semiconductor Devices, 2nd ed.; Wiley: New York, NY, USA, 1981; pp. 44–60. [Google Scholar]
- Wu, C.; Li, Y.; Baklanov, M.R.; Croes, K. Electrical reliability challenges of advanced low-k dielectrics. ECS J. Solid State Sci. Technol. 2014, 4, N3065–N3070. [Google Scholar] [CrossRef]
- Nasyrov, K.A.; Gritsenko, V.A. Charge transport in dielectrics via tunneling between traps. J. Appl. Phys. 2011, 109, 097705. [Google Scholar] [CrossRef]
- Vishnevskiy, A.S.; Naumov, S.; Seregin, D.S.; Wu, Y.H.; Chuang, W.T.; Rasadujjaman, M.; Zhang, J.; Leu, J.; Vorotilov, K.A.; Baklanov, M.R. Effects of Methyl Terminal and Carbon Bridging Groups Ratio on Critical Properties of Porous Organosilicate Glass Films. Materials 2020, 13, 4484. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Takahashi, T. Methylsiloxane Spin–on–Glass Films for Low Dielectric Constant Interlayer Dielectrics. J. Electrochem. Soc. 2000, 147, 1477. [Google Scholar] [CrossRef]
- Baklanov, B.M.; Mogilnikov, K.P.; Polovinkin, V.G.; Dultsev, F.N. Determination of pore size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol. 2000, 18, 1385–1391. [Google Scholar] [CrossRef]
- Iacopi, F.; Travaly, Y.; Eyckens, B.; Waldfried, C.; Abell, T.; Guyer, E.P.; Gage, D.M.; Dauskardt, R.H.; Sajavaara, T.; Houthoofd, K.; et al. Short-ranged structural rearrangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation. J. Appl. Phys. 2006, 99, 053511. [Google Scholar] [CrossRef]
- Geraud, D.; Magbitang, T.; Volksen, W.; Simonyi, E.E.; Miller, R.D. New Spin–On Oxycarbosilane Low–k Dielectric Materials with Exceptional Mechanical Properties. In Proceedings of the IEEE 2005 International Interconnect Technology Conference, Burlingame, CA, USA, 6–8 June 2005; pp. 226–228. [Google Scholar] [CrossRef]
- Woignier, T.; Prassas, M.; Duffours, L. Sintering of aerogels for glass synthesis. J. Sol. Gel Sci. Technol 2019, 90, 76–86. [Google Scholar] [CrossRef]
- Sawamura, K.I.; Furuhata, T.; Sekine, Y.; Kikuchi, E.; Subramanian, B.; Matsukata, M. Zeolite Membrane for Dehydration of Isopropylalcohol−Water Mixture by Vapor Permeation. ACS Appl. Mater. Interfaces 2015, 7, 13728–13730. [Google Scholar] [CrossRef]
- Baklanov, M.R.; Zhao, L.; Van Besien, E.; Pantouvaki, M. Effect of porogen residue on electrical characteristics of ultra low-k materials. Microelectron. Eng. 2011, 88, 990–993. [Google Scholar] [CrossRef]
- Proost, J.; Baklanov, M.; Maex, K.; Delaey, L. Compensation effect during water desorption from siloxane-based spin-on dielectric thin films. J. Vac. Sci. Technol. 2000, 18, 303–306. [Google Scholar] [CrossRef]
- Sneh, O.; Cameron, M.A.; George, S.M. Adsorption and desorption kinetics of H2O on a fully hydroxylated SiO2 surface. Surf. Sci. 1996, 364, 61–78. [Google Scholar] [CrossRef]
- Lloyd, J.R.; Liniger, E.; Shaw, T.M. Simple model for time-dependent dielectric breakdown in inter-and intralevel low-k dielectrics. J. Appl. Phys. 2005, 98, 084109. [Google Scholar] [CrossRef]
- Lloyd, J.R. The Lucky Electron Model for TDDB in Low–k Dielectrics. IEEE Trans. Device Mater. Reliab. 2016, 16, 452–454. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.; Barbarin, Y.; Ciofi, I.; Tang, B.; Kauerauf, T.; Croes, K.; Bommels, J.; De Wolf, I.; Tőkei, Z. Towards the understanding of intrinsic degradation and breakdown mechanisms of a SiOCH low-k dielectric. In Proceedings of the 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 1–5 June 2014; pp. 3A.2.1–3A.2.6. [Google Scholar] [CrossRef]
- Gischia, G.G.; Croes, K.; Groeseneken, G.; Tőkei, Z.; Afanas’ ev, V.; Zhao, L. Study of leakage mechanism and trap density in porous low-k materials. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 549–555. [Google Scholar] [CrossRef]
- Tang, B.J.; Croes, K.; Barbarin, Y.; Wang, Y.Q.; Degraeve, R.; Li, Y.; Toledano-Luque, M.; Kauerauf, T.; Bömmels, J.; Tőkei, Z.; et al. As-grown donor-like traps in low–k dielectrics and their impact on intrinsic TDDB reliability. Microelectron. Reliab. 2014, 54, 1675–1679. [Google Scholar] [CrossRef]
- Atkin, J.M.; Song, D.; Shaw, T.M.; Cartier, E.; Laibowitz, R.B.; Heinz, T.F. Photocurrent spectroscopy of low dielectric materials: Barrier heights and trap densitie. J. Appl. Phys. 2008, 103, 094104. [Google Scholar] [CrossRef]
- Wong, T.K. Time Dependent Dielectric Breakdown in Copper Low–k Interconnects: Mechanisms and Reliability Models. Materials 2012, 9, 1602–1625. [Google Scholar] [CrossRef]
- Lam, J.C.; Huang, M.Y.; Hau Ng, T.; Khalid Bin Dawood, M.; Zhang, F.; Du, A.; Sun, H.; Shen, Z.; Mai, Z. Evidence of ultra-low–k dielectric material degradation and nanostructure alteration of the Cu/ultra-low–k interconnects in time-dependent dielectric breakdown failure. Appl. Phys. Lett. 2013, 102, 022908. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.; Barbarin, Y.; Ciofi, I.; Croes, K.; Bömmels, J.; De Wolf, I.; Tőkei, Z. Correlation between field dependent electrical conduction and dielectric breakdown in a SiCOH based low-k (k = 2.0). Appl. Phys. Lett. 2013, 103, 032904. [Google Scholar] [CrossRef]
- Skuja, L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 1998, 239, 16–48. [Google Scholar] [CrossRef]
- Salh, R. Defect Related Luminescence in Silicon Dioxide Network: A Review. In Crystalline Silicon-Properties and Uses; InTech: London, UK, 2011; pp. 135–172. [Google Scholar] [CrossRef]
- Trukhin, A.; Smits, K.; Chikvaidze, G.; Dyuzheva, T.; Lityagina, L. Luminescence of silicon Dioxide—Silica glass, α-quartz and stishovite. Open Phys. 2011, 9, 1106–1113. [Google Scholar] [CrossRef]
- Trukhin, A.N.; Goldberg, M.; Jansons, J.; Fitting, H.J.; Tale, I.A. Silicon dioxide thin film luminescence in comparison with bulk silica. J. Non-Cryst. Solids 1998, 223, 114–122. [Google Scholar] [CrossRef]
- Pustovarov, V.A.; Zatsepin, A.F.; Biryukov, D.Y.; Aliev, V.S.; Iskhakzay, R.K.; Gritsenko, V.A. Synchrotron-Excited Luminescence and Converting of Defects and Quantum Dots in Modified Silica Films. J. Non-Cryst. Solids 2023, 602, 122077. [Google Scholar] [CrossRef]
- Rasadujjaman, M.; Zhang, J.; Spassky, D.A.; Naumov, S.; Vishnevskiy, A.S.; Vorotilov, K.A.; Yan, J.; Zhang, J.; Baklanov, M.R. UV-Excited Luminescence in Porous Organosilica Films with Various Organic Components. Nanomaterials 2023, 13, 1419. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.M. Current Transport and Maximum Dielectric Strength of Silicon Nitride Films. J. Appl. Phys 1965, 38, 2951–2956. [Google Scholar] [CrossRef]
Annealing Temperature Ta (°C) | Inetwork/Icage | Relative Areas of Characteristic Peaks/ Bands Si–O–Si (×1000) | ||||
---|---|---|---|---|---|---|
Si–OH, H–O–H | C–H | C–H3 | Si–CH3 | Si–OH | ||
350 | 1.76 | 31.0 | 14.3 | 7.0 | 26.2 | 0.4 |
400 | 1.96 | 4.3 | 15.7 | 7.2 | 23.8 | 0.1 |
450 | 2.10 | 6.8 | 12.8 | 7.1 | 23.6 | – |
500 | 2.29 | 15.9 | 8.5 | 7.1 | 18.4 | – |
600 | 4.61 | 19.2 | 2.6 | 1.9 | 5.9 | – |
700 | 5.16 | 180.2 | – | – | – | – |
900 | 7.22 | 1.5 | – | – | – | – |
Annealing Temperature Ta (°C) | Thickness d (nm) | Shrinkage ∆d (%) | Refractive Index n | Average Radius Pores 〈R〉 (nm) | Open Porosity Vopen (%) | Relative (Full) Porosity VLL (%) | Young’s Modulus (GPa) |
---|---|---|---|---|---|---|---|
350 | 324 | 0 | 1.248 | 1.15 | 40.9 | 43.0 | 1.9 |
400 | 305 | 5.9 | 1.253 | 1.37 | 38.5 | 41.7 | 2.4 |
450 | 301 | 7.1 | 1.257 | 1.44 | 38.0 | 41.5 | 2.6 |
500 | 273 | 15.7 | 1.272 | 1.51 | 33.7 | 38.0 | 3.7 |
600 | 233 | 28.1 | 1.280 | 1.09 | 33.4 | 35.4 | 4.6 |
700 | 195 | 39.8 | 1.310 | 0.40 | 28.7 | 28.2 | 11.6 |
900 | 170 | 47.6 | 1.392 | – | ~0 | 10.5 | – |
Annealing Temperature Ta (°C) | Thermal Energy of Ionization, WT (eV) | Optical Energy of Ionization, Wopt (eV) | The Traps Concentration N (cm−3) |
---|---|---|---|
350 | 1.6 | 3.2 | 1.0 × 1020 |
400 | 1.6 | 3.2 | 8.0 × 1021 |
450 | 1.6 | 3.2 | 5.0 × 1022 |
500 | 1.6 | 3.2 | 9.0 × 1019 |
600 | 1.2 | 2.4 | 6.0 × 1019 |
700 | 1.2 | 2.4 | 3.0 × 1019 |
900 | 1.6 | 3.2 | 3.0 × 1020 |
Annealing Temperature Ta (°C) | εi | n2 | |
---|---|---|---|
Poole–Frenkel | Schottky | ||
350 | 1.5841 | 0.2556 | 1.557 |
400 | 1.5441 | 0.2153 | 1.571 |
450 | 1.4096 | 1.6837 | 1.581 |
500 | 1.7293 | 0.0711 | 1.617 |
600 | 1.5311 | 0.0973 | 1.639 |
700 | 1.6689 | 0.1745 | 1.717 |
900 | 1.9316 | 0.5017 | 1.937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerelt-Od, M.; Kolesnikova, T.G.; Mokrushev, P.A.; Vishnevskiy, A.S.; Vorotilov, K.A.; Gismatulin, A.A.; Gritsenko, V.A.; Baklanov, M.R. Exploring the Relationship Between Electrical Characteristics and Changes in Chemical Composition and Structure of OSG Low-K Films Under Thermal Annealing. Coatings 2024, 14, 1412. https://doi.org/10.3390/coatings14111412
Gerelt-Od M, Kolesnikova TG, Mokrushev PA, Vishnevskiy AS, Vorotilov KA, Gismatulin AA, Gritsenko VA, Baklanov MR. Exploring the Relationship Between Electrical Characteristics and Changes in Chemical Composition and Structure of OSG Low-K Films Under Thermal Annealing. Coatings. 2024; 14(11):1412. https://doi.org/10.3390/coatings14111412
Chicago/Turabian StyleGerelt-Od, Mungunsuvd, Tatiana G. Kolesnikova, Pavel A. Mokrushev, Alexey S. Vishnevskiy, Konstantin A. Vorotilov, Andrei A. Gismatulin, Vladimir A. Gritsenko, and Mikhail R. Baklanov. 2024. "Exploring the Relationship Between Electrical Characteristics and Changes in Chemical Composition and Structure of OSG Low-K Films Under Thermal Annealing" Coatings 14, no. 11: 1412. https://doi.org/10.3390/coatings14111412
APA StyleGerelt-Od, M., Kolesnikova, T. G., Mokrushev, P. A., Vishnevskiy, A. S., Vorotilov, K. A., Gismatulin, A. A., Gritsenko, V. A., & Baklanov, M. R. (2024). Exploring the Relationship Between Electrical Characteristics and Changes in Chemical Composition and Structure of OSG Low-K Films Under Thermal Annealing. Coatings, 14(11), 1412. https://doi.org/10.3390/coatings14111412