Experimental Study of Surface Damage of Stainless Steel Subjected to Cavitation Collapse in Aqueous Environment
Abstract
:1. Introduction
2. Cavitation Model and Analysis
3. Experimental Approach
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.Y.; Zhou, H.; Lu, Y.X. Research status and development trend water hydraulic technology. China Mech. Eng. 2000, 12, 120–123+10. [Google Scholar]
- Wu, Z.H.; Liu, X.M.; Li, B.B.; Zhao, Q.; Zhang, C.; Xie, Y.W.; Peng, J.J. Research on Cavitation Distribution Characteristics in Regulate Valve Based on Image Gray Statistics. J. Mech. Eng. 2023, 59, 307–316. [Google Scholar]
- Suslick, K.S.; Flannigan, D.J. Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation. Annu. Rev. Phys. Chem. 2008, 59, 659–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Liu, Y.M.; Lu, L.; Sun, B. Cavitation Surge Numerical Simulation of Surface-sealed Structure of Poppet Valves. Chin. Hydraul. Pneum. 2022, 46, 72–81. [Google Scholar]
- Ning, Q.; Han, Z.; Wenjie, Z.; Zhongyong, P.; Shouqi, Y.; Xiang, L. Investigation on Shock Wave Propagation and Impact of Cloud Cavitation Shedding. J. Agric. Mach. 2021, 52, 135–143. [Google Scholar]
- Ma, C.; Shi, D.; Chen, Y.; Cui, X.; Wang, M. Experimental research on the influence of different curved rigid boundaries on electric spark bubbles. Materials 2020, 13, 3941. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.-b.; Gao, R.; Zhang, W.; Wang, S.-h.; Zhou, R.; Zhang, X.-b. Computational fluid dynamics analysis on flow-induced vibration of a cryogenic poppet valve in consideration of cavitation effect. J. Zhejiang Univ. Sci. A Appl. Phys. Eng. 2022, 23, 83–101. [Google Scholar] [CrossRef]
- Chen, W. Cavitation Corrosion Performance of Several Oceaneering Metals. Hot Work. Technol. 2015, 44, 17–20. [Google Scholar]
- Sreedhar, B.K.; Albert, S.K.; Pandit, A.B. Cavitation damage: Theory and measurements—A review. Wear 2017, 372–373, 177–196. [Google Scholar] [CrossRef]
- Lei, C.Q.; Yuan, S.; Lin, N.M.; Wu, Y.C.; Fu, L.; Ma, G.S. Research Progress on Cavitation Erosion Damage and Protection of Titanium Alloy. Surf. Technol. 2022, 51, 128–142. [Google Scholar]
- Wei, M.J.; Chen, L.; Wu, T.; Hong-Yan, Z.; Hai-Hang, C. Mechanism of the motion of spherical microparticle induced by a collapsed microbubble. Acta Phys. Sin. 2017, 66, 167–175. [Google Scholar]
- Hutli, E.; Fekete, T.; Nedeljkovic, M. Surface characteristics and cavitation damage progress in ductile materials. Eng. Fail. Anal. 2019, 106, 104157. [Google Scholar] [CrossRef]
- Tong, Z.P.; Jiao, J.F.; Zhou, W.F.; Yang, Y.C.; Liu, H.; Sun, Y.; Ren, X. Improvement in cavitation erosion resistance of AA5083 Aluminium alloy by laser shock processing. Surf. Coat. Technol. 2019, 377, 124799. [Google Scholar] [CrossRef]
- Qin, Z.; Bremhorst, K.; Alehossein, H.; Meyer, T. Simulation of cavitation bubbles in a convergent-divergent nozzle water jet. J. Fluid Mech. 2007, 573, 1–25. [Google Scholar] [CrossRef]
- Yang, Y.; Shan, M.; Kan, X.; Shangguan, Y.; Han, Q. Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM. Ultrason. Sonochem. 2019, 62, 104873. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.L.; Yang, Y.; Qiu, C.L.; Shu, F.Y.; Han, Q.B. Numerical study of cavitation bubble collapse dynamics near a curved wall by the volume of fluid method. J. Appl. Acoust. 2022, 41, 548–557. [Google Scholar]
- Shi, S.G.; Wang, G.Y. Thermal effect on cavitation in different fluids. J. Ship 2021, 25, 263–272. [Google Scholar]
- Graat, P.C.J.; Somers, M.A.J. Simultaneous Determination of Composition and Thickness of Thin IronOxide Films from XPS Fe 2p Spectra. Appl. Surf. Sci. 1996, 100–101, 36–40. [Google Scholar] [CrossRef]
- Alexander, V.; Naumkin, A.K.-V.; Stephen, W.G.; Cedric., J.P. NIST X-ray Photoelectron Spectroscopy Database. 2012. Available online: https://srdata.nist.gov/xps/Default.aspx (accessed on 30 July 2023).
- Lin, C.; Zhao, X.B.; Zhang, Y.F. Research Progress on Cavitation-corrosion of Metallic Materials. J. Chin. Soc. Corros. Prot. 2016, 1, 11–19. [Google Scholar]
Sample | Corrosion Potential (V) | Current Density (A/cm2) | Pitting Potential (V) |
---|---|---|---|
Pure Water Cavitation 24 h | −1.088 | 2.118 × 10−5 | −0.428 |
3.5% NaCl Solution Cavitation 24 h | −1.061 | 1.908 × 10−5 | −0.713 |
Pure Water Cavitation 48 h | −1.029 | 3.700 × 10−5 | −0.62 |
3.5% NaCl Solution Cavitation 48 h | −1.026 | 3.476 × 10−5 | −0.616 |
Stainless-steel Original Sample | −0.983 | 5.357 × 10−5 | −0.585 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, L.; Huang, C.; Guo, H.; Man, J.; Yu, P. Experimental Study of Surface Damage of Stainless Steel Subjected to Cavitation Collapse in Aqueous Environment. Coatings 2023, 13, 1356. https://doi.org/10.3390/coatings13081356
Liu L, Zhang L, Huang C, Guo H, Man J, Yu P. Experimental Study of Surface Damage of Stainless Steel Subjected to Cavitation Collapse in Aqueous Environment. Coatings. 2023; 13(8):1356. https://doi.org/10.3390/coatings13081356
Chicago/Turabian StyleLiu, Lei, Lei Zhang, Chuanhui Huang, Huafeng Guo, Jiaxiang Man, and Ping Yu. 2023. "Experimental Study of Surface Damage of Stainless Steel Subjected to Cavitation Collapse in Aqueous Environment" Coatings 13, no. 8: 1356. https://doi.org/10.3390/coatings13081356
APA StyleLiu, L., Zhang, L., Huang, C., Guo, H., Man, J., & Yu, P. (2023). Experimental Study of Surface Damage of Stainless Steel Subjected to Cavitation Collapse in Aqueous Environment. Coatings, 13(8), 1356. https://doi.org/10.3390/coatings13081356