Influence of Ag Doping on the Microstructural, Optical, and Electrical Properties of ZrSiN Coatings Deposited through Pulsed-DC Reactive Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Deposition
2.2. Characterization of the Coatings
3. Results and Discussion
3.1. Elemental Composition of the Ag-ZrSiN Coatings
3.2. Morphological and Microstructural Analysis of the Ag-ZrSiN Coatings
3.3. Nanohardness of the Ag-ZrSiN Coatings
3.4. Optical Response of the Ag-ZrSiN Coatings
3.5. Electrical Response of the Ag-ZrSiN Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valour, A.; Higuita, M.A.U.; Guillonneau, G.; Crespo-Monteiro, N.; Jamon, D.; Hochedel, M.; Michalon, J.Y.; Reynaud, S.; Vocanson, F.; Jiménez, C.; et al. Optical, Electrical and Mechanical Properties of TiN Thin Film Obtained from a TiO2 Sol-Gel Coating and Rapid Thermal Nitridation. Surf. Coat. Technol. 2021, 413, 127089. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Lapitskaya, V.; Khabarava, A.; Chizhik, S.; Warcholinski, B.; Gilewicz, A. The Influence of Nitrogen on the Morphology of ZrN Coatings Deposited by Magnetron Sputtering. Appl. Surf. Sci. 2020, 522, 146508. [Google Scholar] [CrossRef]
- Gharavi, M.A.; Greczynski, G.; Eriksson, F.; Lu, J.; Balke, B.; Fournier, D.; Le Febvrier, A.; Pallier, C.; Eklund, P. Synthesis and Characterization of Single-Phase Epitaxial Cr2N Thin Films by Reactive Magnetron Sputtering. J. Mater. Sci. 2019, 54, 1434–1442. [Google Scholar] [CrossRef] [Green Version]
- Domingues, R.P.; Rodrigues, M.S.; Lopes, C.; Pedrosa, P.; Alves, E.; Barradas, N.P.; Borges, J.; Vaz, F. Thin Films Composed of Metal Nanoparticles (Au, Ag, Cu) Dispersed in AlN: The Influence of Composition and Thermal Annealing on the Structure and Plasmonic Response. Thin Solid Films 2019, 676, 12–25. [Google Scholar] [CrossRef]
- Cavaleiro, D.; Carvalho, S.; Cavaleiro, A.; Fernandes, F. TiSiN(Ag) Films Deposited by HiPIMS Working in DOMS Mode: Effect of Ag Content on Structure, Mechanical Properties and Thermal Stability. Appl. Surf. Sci. 2019, 478, 426–434. [Google Scholar] [CrossRef]
- Borja-Goyeneche, E.N.; Olaya-Florez, J.J. A Microstructural and Corrosion Resistance Study of (Zr, Si, Ti)N-Ni Coatings Produced through Co-Sputtering. Dyna 2018, 85, 192–207. [Google Scholar] [CrossRef]
- Chang, L.-C.C.; Zheng, Y.-Z.Z.; Chen, Y.-I.I.; Chang, S.-C.C.; Liu, B.-W.W. Bonding Characteristics and Chemical Inertness of Zr-Si-N Coatings with a High Si Content in Glass Molding. Coatings 2018, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Li, J.; Zhu, L.; Wang, L. Effect of Cu Content on Microstructure, Mechanical and Anti-Fouling Properties of TiSiN-Cu Coating Deposited by Multi-Arc Ion Plating. Appl. Surf. Sci. 2018, 427, 444–451. [Google Scholar] [CrossRef]
- Shirvani, F.; Shokri, A.; Ravan, B.A. An Ab-Initio Study of Structure and Mechanical Properties of Rocksalt ZrN and Its Bilayers. Solid State Commun. 2021, 328, 114218. [Google Scholar] [CrossRef]
- Rao, Z.; Chason, E. Measurements and Modeling of Residual Stress in Sputtered TiN and ZrN: Dependence on Growth Rate and Pressure. Surf. Coatings Technol. 2020, 404, 126462. [Google Scholar] [CrossRef]
- Ferreira, C.P.; das Mercês Reis de Castro, M.; Tentardini, E.K.; de Freitas Cunha Lins, V.; Saliba, P.A. Silicon Influence on Corrosion Resistance of Magnetron Sputtered ZrN and ZrSiN Thin Films. Surf. Eng. 2020, 36, 33–40. [Google Scholar] [CrossRef]
- Kumar, D.D.; Rani, R.; Kumar, N.; Panda, K.; Kirubaharan, A.M.K.; Kuppusami, P.; Baskaran, R. Tribochemistry of TaN, TiAlN and TaAlN Coatings under Ambient Atmosphere and High-Vacuum Sliding Conditions. Appl. Surf. Sci. 2020, 499, 143989. [Google Scholar] [CrossRef]
- Mejía, H.D.; Perea, D.; Bejarano, G. Development and Characterization of TiAlN (Ag, Cu) Nanocomposite Coatings Deposited by DC Magnetron Sputtering for Tribological Applications. Surf. Coat. Technol. 2020, 381, 125095. [Google Scholar] [CrossRef]
- Greczynski, G.; Bakhit, B.; Hultman, L.; Odén, M. High Si Content TiSiN Films with Superior Oxidation Resistance. Surf. Coat. Technol. 2020, 398, 126087. [Google Scholar] [CrossRef]
- Cavaleiro, D.; Veeregowda, D.; Cavaleiro, A.; Carvalho, S.; Fernandes, F. High Temperature Tribological Behaviour of TiSiN(Ag) Films Deposited by HiPIMS in DOMS Mode. Surf. Coat. Technol. 2020, 399, 126176. [Google Scholar] [CrossRef]
- AL-Rjoub, A.; Cavaleiro, A.; Fernandes, F. Influence of Ag Alloying on the Morphology, Structure, Mechanical Properties, Thermal Stability and Oxidation Resistance of Multilayered TiSiN/Ti(Ag)N Films. Mater. Des. 2020, 192, 108703. [Google Scholar] [CrossRef]
- Ding, J.C.; Wang, Q.M.; Liu, Z.R.; Jeong, S.; Zhang, T.F.; Kim, K.H. Influence of Bias Voltage on the Microstructure, Mechanical and Corrosion Properties of AlSiN Films Deposited by HiPIMS Technique. J. Alloys Compd. 2019, 772, 112–121. [Google Scholar] [CrossRef]
- Qiu, L.; Du, Y.; Wang, S.; Li, K.; Yin, L.; Wu, L.; Zhong, Z.; Albir, L. Mechanical Properties and Oxidation Resistance of Chemically Vapor Deposited TiSiN Nanocomposite Coating with Thermodynamically Designed Compositions. Int. J. Refract. Met. Hard Mater. 2019, 80, 30–39. [Google Scholar] [CrossRef]
- Warcholinski, B.; Kuznetsova, T.A.A.; Gilewicz, A.; Zubar, T.I.I.; Lapitskaya, V.A.A.; Chizhik, S.A.A.; Komarov, A.I.I.; Komarova, V.I.I.; Kuprin, A.S.S.; Ovcharenko, V.D.D.; et al. Structural and Mechanical Properties of Zr-Si-N Coatings Deposited by Arc Evaporation at Different Substrate Bias Voltages. J. Mater. Eng. Perform. 2018, 27, 3940–3950. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Chen, Y.; Kulczyk-malecka, J.; Kelly, P.; Zeng, Y.; Zhang, X. Comparison of the Oxidation Behavior of a Zirconium Nitride Coating in Water Vapor and Air at High Temperature. Corros. Sci. 2018, 138, 242–251. [Google Scholar] [CrossRef]
- Krysina, O.V.; Ivanov, Y.F.; Prokopenko, N.A.; Shugurov, V.V.; Petrikova, E.A.; Denisova, Y.A.; Tolkachev, O.S. Influence of Nb Addition on the Structure, Composition and Properties of Single-Layered ZrN-Based Coatings Obtained by Vacuum-Arc Deposition Method. Surf. Coat. Technol. 2020, 387, 125555. [Google Scholar] [CrossRef]
- Silva Neto, P.C.; Freitas, F.G.R.; Fernandez, D.A.R.; Carvalho, R.G.; Felix, L.C.; Terto, A.R.; Hubler, R.; Mendes, F.M.T.; Silva Junior, A.H.; Tentardini, E.K. Investigation of Microstructure and Properties of Magnetron Sputtered Zr-Si-N Thin Films with Different Si Content. Surf. Coat. Technol. 2018, 353, 355–363. [Google Scholar] [CrossRef]
- Mejía, C.P.; Chellali, M.R.; Garzón, C.M.; Olaya, J.J.; Hahn, H.; Velasco, L. Effect of Discharge Current on the Corrosion Resistance and Microstructure of ZrTiSiN Coatings Deposited by Magnetron Co-Sputtering. Mater. Today Commun. 2021, 26, 102151. [Google Scholar] [CrossRef]
- Vanegas P, H.S.; Calderon V, S.; Alfonso O, J.E.; Olaya F, J.J.; Ferreira, P.J.; Carvalho, S. Influence of Silicon on the Microstructure and the Chemical Properties of Nanostructured ZrN-Si Coatings Deposited by Means of Pulsed-DC Reactive Magnetron Sputtering. Appl. Surf. Sci. 2019, 481, 1249–1259. [Google Scholar] [CrossRef]
- Cao, F.; Munroe, P.; Zhou, Z.; Xie, Z. Mechanically Robust TiAlSiN Coatings Prepared by Pulsed-DC Magnetron Sputtering System: Scratch Response and Tribological Performance. Thin Solid Films 2018, 645, 222–230. [Google Scholar] [CrossRef]
- Ghafoor, N.; Petrov, I.; Klenov, D.O.; Freitag, B.; Jensen, J.; Greene, J.E.; Hultman, L.; Odén, M. Self-Organized Anisotropic (Zr1-XSix)Ny Nanocomposites Grown by Reactive Sputter Deposition. Acta Mater. 2015, 82, 179–189. [Google Scholar] [CrossRef]
- Yalamanchili, K.; Forsén, R.; Jiménez-Piqué, E.; Johansson Jöesaar, M.P.; Roa, J.J.; Ghafoor, N.; Odén, M. Structure, Deformation and Fracture of Arc Evaporated Zr-Si-N Hard Films. Surf. Coat. Technol. 2014, 258, 1100–1107. [Google Scholar] [CrossRef]
- Geng, D.; Zeng, R.; Rong, M.; Wang, Q.; Li, H.; Wu, Z. Impact of Si Addition on Oxidation Resistance of Zr–Si–N Nanocomposite Films. Vacuum 2021, 183, 109853. [Google Scholar] [CrossRef]
- Velasco, L.; Olaya, J.J.; Rodil, S.E. Effect of Si Addition on the Structure and Corrosion Behavior of NbN Thin Films Deposited by Unbalanced Magnetron Sputtering. Appl. Phys. A Mater. Sci. Process 2016, 122, 101. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kumari, S. Soni Development of Hard and Optically Transparent Al-Si-N Nanocomposite Coatings. Surf. Interface Anal. 2017, 49, 345–348. [Google Scholar] [CrossRef]
- Vanegas, H.S.; Alfonso, J.E.; Olaya, J.J. Effect of Si Content on Functional Behavior of Nanostructured Coatings of Zr-Si-N. Mater. Res. Express 2019, 6, 115076. [Google Scholar] [CrossRef]
- Kulczyk-Malecka, J.; Kelly, P.J.; West, G.; Clarke, G.C.B.; Ridealgh, J.A. Diffusion Studies in Magnetron Sputter Deposited Silicon Nitride Films. Surf. Coat. Technol. 2014, 255, 37–42. [Google Scholar] [CrossRef]
- Musil, J.; Daniel, R.; Zeman, P.; Takai, O. Structure and Properties of Magnetron Sputtered Zr-Si-N Films with a High (≥25 at.%) Si Content. Thin Solid Films 2005, 478, 238–247. [Google Scholar] [CrossRef]
- Dang, C.; Li, J.; Wang, Y.; Yang, Y.; Wang, Y.; Chen, J. Influence of Ag Contents on Structure and Tribological Properties of TiSiN-Ag Nanocomposite Coatings on Ti–6Al–4V. Appl. Surf. Sci. 2017, 394, 613–624. [Google Scholar] [CrossRef]
- Popović, M.; Novaković, M.; Rakočević, Z.; Bibić, N. Tailoring the Structural and Optical Properties of TiN Thin Films by Ag Ion Implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 389–390, 33–39. [Google Scholar] [CrossRef]
- Sun, H.; Billard, A.; Luo, H.; Zheng, W.T.; Zheng, X.L.; Dai, M.J.; Lin, S.S.; Shi, Q.; Sanchette, F. Influence of Carbon Content on the Mechanical Properties of TiCN–Cu Nanocomposite Coatings Prepared by Multi-Arc Ion Plating. Vacuum 2021, 187, 110139. [Google Scholar] [CrossRef]
- Byun, M.; Kim, C.S.; Kim, D.H.; Hwang, J.U.; Lee, J.H.; Park, E.S. A 3D Printing Route to Fabrication of ZrCuSi Alloy Target for ZrCuSiN Nanocomposite Thin Films. Appl. Surf. Sci. 2021, 562, 150136. [Google Scholar] [CrossRef]
- Luo, X.Y.; Ma, D.L.; Jing, P.P.; Gong, Y.L.; Zhang, Y.; Jing, F.J.; Leng, Y.X. In Vitro Analysis of Cell Compatibility of TiCuN Films with Different Cu Contents. Surf. Coat. Technol. 2021, 408, 126790. [Google Scholar] [CrossRef]
- Hu, C.; Guo, K.; Li, Y.; Gu, Z.; Quan, J.; Zhang, S.; Zheng, W. Optical Coatings of Durability Based on Transition Metal Nitrides. Thin Solid Films 2019, 688, 137339. [Google Scholar] [CrossRef]
- Cui, X.; Jin, G.; Hao, J.; Li, J.; Guo, T. The Influences of Si Content on Biocompatibility and Corrosion Resistance of Zr-Si-N Films. Surf. Coat. Technol. 2013, 228, 524–528. [Google Scholar] [CrossRef]
- Brandes, E. Smithells Metals Reference Book, 7th ed.; Brandes, E., Brook, G., Eds.; Butterworth: London, UK, 1983; ISBN 0750636246. [Google Scholar]
- Ju, H.; Yu, D.; Yu, L.; Ding, N.; Xu, J.; Zhang, X.; Zheng, Y.; Yang, L.; He, X. The Influence of Ag Contents on the Microstructure, Mechanical and Tribological Properties of ZrN-Ag Films. Vacuum 2018, 148, 54–61. [Google Scholar] [CrossRef]
- Ju, H.; Yu, L.; Yu, D.; Asempah, I.; Xu, J. Microstructure, Mechanical and Trobological Properties of TiN-Ag Films Deposited by Reactive Magnetron Sputtering. Vacuum 2017, 141, 82–88. [Google Scholar] [CrossRef]
- Rajput, S.S.; Gangopadhyay, S.; Cavaleiro, A.; AL-Rjoub, A.; Kumar, C.S.; Fernandes, F. Influence of Ag Additions on the Structure, Mechanical Properties and Oxidation Behaviour of CrAlNAg Coatings Deposited by Sputtering. Surf. Coat. Technol. 2021, 426, 127767. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, M.; Li, J.; Wang, L. The Improved Corrosion and Tribocorrosion Properties of TiSiN/Ag by Thermal Treatment. Surf. Coat. Technol. 2020, 385, 125437. [Google Scholar] [CrossRef]
- Dang, C.; Yao, Y.; Olugbade, T.; Li, J.; Wang, L. Effect of Multi-Interfacial Structure on Fracture Resistance of Composite TiSiN/Ag/TiSiN Multilayer Coating. Thin Solid Films 2018, 653, 107–112. [Google Scholar] [CrossRef]
- Mejía, C.P.; Vanegas, H.S.; Olaya, J.J. Electrochemical and Optical Behavior of ZrN-Ag Coatings Deposited by Means of DC Reactive Magnetron Sputtering Technique. Coatings 2022, 12, 754. [Google Scholar] [CrossRef]
- Yu, D.; Yu, L.; Asempah, I.; Ju, H.; Xu, J.; Koyama, S.; Gao, Y. Microstructure, Mechanical and Tribological Properties of VCN-Ag Composite Films by Reactive Magnetron Sputtering. Surf. Coat. Technol. 2020, 399, 126167. [Google Scholar] [CrossRef]
- Chen, Y.I.; Chang, S.C.; Chang, L.C. Oxidation Resistance and Mechanical Properties of Zr–Si–N Coatings with Cyclic Gradient Concentration. Surf. Coat. Technol. 2017, 320, 168–173. [Google Scholar] [CrossRef]
- Manninen, N.K.; Ribeiro, F.; Escudeiro, A.; Polcar, T.; Carvalho, S.; Cavaleiro, A. Influence of Ag Content on Mechanical and Tribological Behavior of DLC Coatings. Surf. Coat. Technol. 2013, 232, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Ren, P.; Zhang, K.; He, X.; Du, S.; Yang, X.; An, T.; Wen, M.; Zheng, W. Toughness Enhancement and Tribochemistry of the Nb-Ag-N Films Actuated by Solute Ag. Acta Mater. 2017, 137, 1–11. [Google Scholar] [CrossRef]
- Borges, J.; Costa, D.; Antunes, E.; Lopes, C.; Rodrigues, M.S.; Apreutesei, M.; Alves, E.; Barradas, N.P.; Pedrosa, P.; Moura, C.; et al. Biological Behaviour of Thin Films Consisting of Au Nanoparticles Dispersed in a TiO2 Dielectric Matrix. Vacuum 2015, 122, 360–368. [Google Scholar] [CrossRef]
- Das, S.; Alford, T.L. Structural and Optical Properties of Ag-Doped Copper Oxide Thin Films on Polyethylene Napthalate Substrate Prepared by Low Temperature Microwave Annealing. J. Appl. Phys. 2013, 113, 1–7. [Google Scholar] [CrossRef]
- Jalili, S.; Hajakbari, F.; Hojabri, A. Effect of Silver Thickness on Structural, Optical and Morphological Properties of Nanocrystalline Ag/NiO Thin Films. J. Theor. Appl. Phys. 2018, 12, 15–22. [Google Scholar] [CrossRef] [Green Version]
- El Rouby, W.M.A.; Al-Ghamdi, A.A.; Abdel-Wahab, M.S.; Jilani, A. Sunlight-Enhanced Catalytic Degradation over Ag-CuO Nanoparticles Thin Films Prepared by DC/RF Sputtering Technique. Bull. Mater. Sci. 2018, 41, 58. [Google Scholar] [CrossRef] [Green Version]
- Zanatta, A.R. Revisiting the Optical Bandgap of Semiconductors and the Proposal of a Unified Methodology to Its Determination. Sci. Rep. 2019, 9, 11225. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.S.; Manohari, A.G.; Dhanapandian, S.; Mahalingam, T. Physical Properties of Spray Pyrolyzed Ag-Doped SnS Thin Films for Opto-Electronic Applications. Mater. Lett. 2014, 131, 167–170. [Google Scholar] [CrossRef]
- Sanjines, R.; Sandu, C.S. Interfacial Electron Scattering in Nanocomposite Materials: Electrical Measurements to Reveal the Nc-MeN/a-SiNx Nanostructure in Order to Tune Macroscopic Properties. In Nanocomposites—New Trends and Developments; InTech: Nappanee, IN, USA, 2012. [Google Scholar]
- Pedrosa, P.; Machado, D.; Lopes, C.; Alves, E.; Barradas, N.P.; Martin, N.; Macedo, F.; Fonseca, C.; Vaz, F. Nanocomposite Ag:TiN Thin Films for Dry Biopotential Electrodes. Appl. Surf. Sci. 2013, 285, 40–48. [Google Scholar] [CrossRef] [Green Version]
Reference | Deposition Method | Coating |
---|---|---|
Domingues et al. [4] | DC reactive magnetron sputtering. | Ag-AlN Au-AlN Cu-AlN |
Cavaleiro et al. [5,15] | High-power impulse magnetron sputtering. | Ag-TiSiN |
Dang et al. [34] | Co-sputtering in a multi-arc ion plating system. | Ag-TiSiN |
Popović et al. [35] | DC reactive sputtering. | TiN irradiated with Ag |
Samples | Number of Pellets | Sputtering Parameters | |||||
---|---|---|---|---|---|---|---|
Si | Ag | Base Pressure (Pa) | Work Pressure (Pa) | Power (W) | Sputtering Time (min) | Thickness (nm) | |
ZrSiN | 1 | 0 | 4 × 10−4 | 0.8 | 140 | 60 | 955 ± 8 |
1Ag-ZrSiN | 1 | 1 | 4 × 10−4 | 0.8 | 140 | 60 | 1115 ± 4 |
2Ag-ZrSiN | 1 | 2 | 4 × 10−4 | 0.8 | 140 | 60 | 1219 ± 9 |
Coatings | Zr (at.%) | N (at.%) | Si (at.%) | Ag (at.%) | O (at.%) | (Zr + Si)/Ag |
---|---|---|---|---|---|---|
ZrSiN | 43.0 | 49.0 | 8.0 | 0.0 | 0.0 | - |
1Ag-ZrSiN | 39.0 | 47.0 | 8.0 | 6.0 | 0.0 | 7.8 |
2Ag-ZrSiN | 36.0 | 41.0 | 7.0 | 12.0 | 4.0 | 3.6 |
Coatings | Ag (at.%) | Nanohardness (GPa) | Resistivity (Ω·cm) |
---|---|---|---|
ZrSiN | 0 | 18.1 ± 1.6 | 77.99 |
1Ag-ZrSiN | 6 | 17.8 ± 2.0 | 6.72 |
2Ag-ZrSiN | 12 | 16.1 ± 2.1 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanegas Parra, H.S.; Calderón Velasco, S.; Alfonso Orjuela, J.E.; Olaya Florez, J.J.; Carvalho, S. Influence of Ag Doping on the Microstructural, Optical, and Electrical Properties of ZrSiN Coatings Deposited through Pulsed-DC Reactive Magnetron Sputtering. Coatings 2023, 13, 1154. https://doi.org/10.3390/coatings13071154
Vanegas Parra HS, Calderón Velasco S, Alfonso Orjuela JE, Olaya Florez JJ, Carvalho S. Influence of Ag Doping on the Microstructural, Optical, and Electrical Properties of ZrSiN Coatings Deposited through Pulsed-DC Reactive Magnetron Sputtering. Coatings. 2023; 13(7):1154. https://doi.org/10.3390/coatings13071154
Chicago/Turabian StyleVanegas Parra, Henry Samir, Sebastián Calderón Velasco, José Edgar Alfonso Orjuela, Jhon Jairo Olaya Florez, and Sandra Carvalho. 2023. "Influence of Ag Doping on the Microstructural, Optical, and Electrical Properties of ZrSiN Coatings Deposited through Pulsed-DC Reactive Magnetron Sputtering" Coatings 13, no. 7: 1154. https://doi.org/10.3390/coatings13071154
APA StyleVanegas Parra, H. S., Calderón Velasco, S., Alfonso Orjuela, J. E., Olaya Florez, J. J., & Carvalho, S. (2023). Influence of Ag Doping on the Microstructural, Optical, and Electrical Properties of ZrSiN Coatings Deposited through Pulsed-DC Reactive Magnetron Sputtering. Coatings, 13(7), 1154. https://doi.org/10.3390/coatings13071154