Facile Fabrication of Robust and Fluorine-Free Superhydrophobic PDMS/STA-Coated Cotton Fabric for Highly Efficient Oil-Water Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Superhydrophobic Cotton Fabric
2.3. Oil–Water Separation
2.4. Characterizations
3. Results and Discussion
3.1. Wettability of Superhydrophobic Cotton Fabric
3.2. Formation of Superhydrophobic PDMS/STA-Coated Cotton Fabric
3.3. Oil–Water Separation Performance
3.4. Durability and Chemical Stability of PS-CF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McClenachan, G.; Turner, R.E. Disturbance legacies and shifting trajectories: Marsh soil strength and shoreline erosion a decade after the Deepwater Horizon oil spill. Environ. Pollut. 2023, 322, 121151. [Google Scholar] [CrossRef] [PubMed]
- Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human appropriation of renewable fresh water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- Ebenstein, A. The consequences of industrialization: Evidence from water pollution and digestive cancers in China. Rev. Econ. Stat. 2012, 94, 186–201. [Google Scholar] [CrossRef]
- Alves, T.M.; Kokinou, E.; Zodiatis, G.; Radhakrishnan, H.; Panagiotakis, C.; Lardner, R. Multidisciplinary oil spill modeling to protect coastal communities and the environment of the Eastern Mediterranean Sea. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Dean, J.; Aljaberi, F.; Altememee, N. In-situ adcombustion in bellevue field in louisiana–history, current state and future strategies. Fuel 2021, 284, 118992. [Google Scholar] [CrossRef]
- Li, B.; Liu, X.; Zhang, X.; Chai, W. Stainless steel mesh coated with silica for oil–water separation. Eur. Polym. J. 2015, 73, 374–379. [Google Scholar] [CrossRef]
- Zhan, M.; Yang, W.; Zhang, F.; Luo, C.; Wu, H.; Guo, P.; Yan, C. Experimental investigation on the separation performance for a new oil-water separator. Front. Energy Res. 2021, 8, 608586. [Google Scholar] [CrossRef]
- Khan, J.A.; Al-Kayiem, H.H.; Aleem, W.; Saad, A.B. Influence of alkali-surfactant-polymer flooding on the coalescence and sedimentation of oil/water emulsion in gravity separation. J. Pet. Sci. Eng. 2019, 173, 640–649. [Google Scholar] [CrossRef]
- Xiang, B.; Sun, Q.; Zhong, Q.; Mu, P.; Li, J. Current research situation and future prospect of superwetting smart oil/water separation materials. J. Mater. Chem. A 2022, 10, 20190–20217. [Google Scholar] [CrossRef]
- Baig, U.; Faizan, M.; Dastageer, M.A. Polyimide based super-wettable membranes/materials for high performance oil/water mixture and emulsion separation: A review. Adv. Colloid Interface Sci. 2021, 297, 102525. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Z.; Liu, W. Special Superwetting Materials from Bioinspired to Intelligent Surface for On--Demand Oil/Water Separation: A Comprehensive Review. Small 2022, 18, 2204624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Tao, F.; An, Y.; Zhong, Y.; Liu, Z.; Wang, X. An overview of biomass-based Oil/Water separation materials. Sep. Purif. Technol. 2023, 316, 123767. [Google Scholar] [CrossRef]
- He, Y.; Li, J.; Luo, K.; Li, L.; Chen, J.; Li, J. Engineering reduced graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil–water separation. Ind. Eng. Chem. Res. 2016, 55, 3775–3781. [Google Scholar] [CrossRef]
- Sim, I.; Park, S.; Shin, K.Y.; Yang, C.; Kang, H.; Hwang, J.Y.; Moon, S.J. Inkjet Printing of High Aspect Ratio Silver Lines via Laser-Induced Selective Surface Wetting Technique. Coatings 2023, 13, 683. [Google Scholar] [CrossRef]
- Jia, C.; Zhu, J.; Zhang, L. An Anti-Corrosion Superhydrophobic Copper Surface Fabricated by Milling and Chemical Deposition. Coatings 2022, 12, 442. [Google Scholar] [CrossRef]
- Li, A.; Jia, Y.; Zhang, F.; Zhao, Y.; Zhang, F. The Effects of Zinc Oxide/Silicon Dioxide Composite Coating on Surface Wettability and the Mechanical Properties of Paper Mulching Film. Coatings 2022, 12, 555. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, S.; Geng, H.; Zhang, X.; Zhang, M.; Xu, F.; Wang, H. Robust and multifunctional superamphiphobic coating toward effective anti-adhesion. Chem. Eng. J. 2022, 428, 131162. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Yang, H.; Meng, Q.; Wang, W.; Li, H.; Li, L. Multifunctional superhydrophobic composite coatings with remarkable passive heat dissipation and anticorrosion properties. Ind. Eng. Chem. Res. 2021, 60, 11019–11029. [Google Scholar] [CrossRef]
- Al-Ahmed, Z.A.; Alzahrani, S.O.; AlJohani, A.K.; Obaid, N.A.; Alkhamis, K.; Alqahtani, A.M.; El-Metwaly, N.M. An anticounterfeiting strategy based on photochromic nonwoven polyester fabric by plasma-assisting spray coating with ultraviolet--responsive silica@ strontium aluminate nanoparticles. Appl. Organomet. Chem. 2023, 37, e7035. [Google Scholar] [CrossRef]
- Han, Z.; Feng, X.; Jiao, Z.; Wang, Z.; Zhang, J.; Zhao, J.; Ren, L. Bio-inspired antifogging PDMS coupled micro-pillared superhydrophobic arrays and SiO2 coatings. RSC Adv. 2018, 47, 26497–26505. [Google Scholar] [CrossRef]
- Wang, W.; Dong, C.; Liu, S.; Zhang, Y.; Kong, X.; Wang, M.; Bi, H. Super-hydrophobic cotton aerogel with ultra-high flux and high oil retention capability for efficient oil/water separation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130572. [Google Scholar] [CrossRef]
- Abu Jarad, N.; Imran, H.; Imani, S.M.; Didar, T.F.; Soleymani, L. Fabrication of superamphiphobic surfaces via spray coating; a review. Adv. Mater. Technol. 2022, 7, 2101702. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Bai, W.; Zhu, S.; Li, Y.; Ding, J.; Feng, L. Robust superhydrophobic materials with outstanding durability fabricated by epoxy adhesive-assisted facile spray method. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131109. [Google Scholar] [CrossRef]
- Yang, Z.; Chang, J.; He, X.; Bai, X.; Yuan, C. Construction of robust slippery lubricant-infused epoxy-nanocomposite coatings for marine antifouling application. Prog. Org. Coat. 2023, 177, 107458. [Google Scholar] [CrossRef]
- Li, K.; Xiang, J.; Zhou, J.; Su, X.; Xie, H.; Lin, S.; Wu, W. Self-healing and wear resistance stable superhydrophobic composite coating with electrothermal and photothermal effects for anti-icing. Prog. Org. Coat. 2023, 177, 107415. [Google Scholar] [CrossRef]
- Camalan, M.; Arol, A.İ. Preliminary assessment of spray coating, solution-immersion and dip coating to render minerals superhydrophobic. Miner. Eng. 2022, 176, 107357. [Google Scholar] [CrossRef]
- Xia, Y.; Fan, G.; Chen, K.; Chen, Y.; He, Z.; Ou, J. Preparation and anti-corrosion performances of grass-like microstructured superhydrophobic surface on copper via solution-immersion. Mater. Lett. 2022, 323, 132482. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Gao, M.; Xia, Y.; Chai, W.; Su, X.; Liu, Y. Bio-inspired construction of super-hydrophobic, eco-friendly multifunctional and bio-based cotton fabrics via impregnation method. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129647. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, J.; Qi, W.; Su, R. Eco-friendly marine antifouling coating consisting of cellulose nanocrystals with bioinspired micromorphology. Carbohydr. Polym. 2023, 304, 120504. [Google Scholar] [CrossRef]
- Ren, C.; Yu, Y. Superhydrophobic, heat-resistant alumina-methylsilsesquioxane hybrid aerogels with enhanced thermal insulating performance in high humidity. Ceram. Int. 2023, 49, 12625–12632. [Google Scholar] [CrossRef]
- Zhang, X.; Si, Y.; Mo, J.; Guo, Z. Robust micro-nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability. Chem. Eng. J. 2017, 313, 1152–1159. [Google Scholar] [CrossRef]
- Zhu, S.; Deng, W.; Su, Y. Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications. Chin. J. Chem. Eng. 2023; in press. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y.; Wang, Y.; Liang, W.; Wang, F.; Zhu, D.; Zhao, H. Functionalized superhydrophobic MWCNT/PEI nanocomposite film with anti-icing and photo-/electrothermal deicing properties. Mater. Chem. Phys. 2023, 297, 127385. [Google Scholar] [CrossRef]
- Han, J.; Liu, E.; Zhou, Y.; Zhao, S.; Yan, H.; Hu, C.; Su, Y. Robust superhydrophobic film on aluminum alloy prepared with TiO2/SiO2-silane composite film for efficient self-cleaning, anti-corrosion and anti-icing. Mater. Today Commun. 2023, 34, 105085. [Google Scholar] [CrossRef]
- Chu, Z.; Feng, Y.; Xu, T.; Zhu, C.; Li, K.; Li, Y.; Yang, Z. Magnetic, self–heating and superhydrophobic sponge for solar–driven high–viscosity oil–water separation. J. Hazard. Mater. 2023, 445, 130553. [Google Scholar] [CrossRef]
- Ouyang, Y.; Huang, Z.; Fang, R.; Wu, L.; Yong, Q.; Xie, Z.H. Silica nanoparticles enhanced polysiloxane-modified nickel-based coatings on Mg alloy for robust superhydrophobicity and high corrosion resistance. Surf. Coat. Technol. 2022, 450, 128995. [Google Scholar] [CrossRef]
- Islam, M.S.; Akter, N.; Karim, M.R. Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized pullulan. Colloids Surf. A Physicochem. Eng. Asp. 2010, 362, 117–120. [Google Scholar] [CrossRef]
- Wang, K.; Dong, Y.; Zhang, W.; Zhang, S.; Li, J. Preparation of stable superhydrophobic coatings on wood substrate surfaces via mussel-inspired polydopamine and electroless deposition methods. Polymers 2017, 9, 218. [Google Scholar] [CrossRef]
- Jeong, H.; Baek, S.; Han, S.; Jang, H.; Rockson, T.K.; Lee, H.S. Chemically Robust Superhydrophobic Poly (vinylidene fluoride) Films with Grafting Crosslinkable Fluorinated Silane. Macromol. Res. 2018, 26, 493–499. [Google Scholar] [CrossRef]
- Pathak, P.; Grewal, H.S. Solvent-free synthesis of superhydrophobic materials with self-regenerative and drag reduction properties. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130675. [Google Scholar] [CrossRef]
- Peng, Z.; Song, J.; Gao, Y.; Liu, J.; Lee, C.; Chen, G.; Leung, M.K. A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy 2021, 85, 106021. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Zou, Y.; Lu, K.; Li, L.; Wu, Y.; Yu, Q. Superhydrophobic photothermal coatings based on candle soot for prevention of biofilm formation. J. Mater. Sci. Technol. 2023, 132, 18–26. [Google Scholar] [CrossRef]
- Chen, Z.; Zuo, J.; Zhao, T.; Tan, Q.; Nong, Y.; Xu, S.; Pi, P. Superhydrophobic copper foam bed with extended permeation channels for water-in-oil emulsion separation with high efficiency and flux. J. Environ. Chem. Eng. 2023, 11, 109018. [Google Scholar] [CrossRef]
- Anitha, C.; Mayavan, S. Salvinia inspired fluroine free superhydrophobic coatings. Appl. Surf. Sci. 2018, 449, 250–260. [Google Scholar]
- Tagliaro, I.; Seccia, S.; Pellegrini, B.; Bertini, S.; Antonini, C. Chitosan-based coatings with tunable transparency and superhydrophobicity: A solvent-free and fluorine-free approach by stearoyl derivatization. Carbohydr. Polym. 2023, 302, 120424. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, Y.; Gan, S.; Xu, Q.; Hou, M.; Lu, C.; Ni, Z. A Simple and Convenient Method for Preparing Fluorine-Free Durable Superhydrophobic Coatings Suitable for Multiple Substrates. Materials 2023, 16, 1771. [Google Scholar] [CrossRef]
- Suryaprabha, T.; Sethuraman, M.G. Fabrication of a superhydrophobic and flame-retardant cotton fabric using a DNA-based coating. J. Mater. Sci. 2020, 55, 11959–11969. [Google Scholar] [CrossRef]
- Lin, D.; Zeng, X.; Li, H.; Lai, X. Facile Fabrication of Superhydrophobic and Flame-Retardant Coatings on Cotton Fabrics. Polymers 2022, 14, 5314. [Google Scholar]
- Ejeta, D.D.; Wang, C.F.; Kuo, S.W.; Chen, J.K.; Tsai, H.C.; Hung, W.S.; Lai, J.Y. Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation. Chem. Eng. J. 2020, 402, 126289. [Google Scholar] [CrossRef]
- Li, L.; Li, B.; Sun, H.; Zhang, J. Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation. J. Mater. Chem. A 2017, 5, 14858–14864. [Google Scholar] [CrossRef]
- Yin, Z.; Pan, Y.; Bao, M.; Li, Y. Superhydrophobic magnetic cotton fabricated under low carbonization temperature for effective oil/water separation. Sep. Purif. Technol. 2021, 266, 118535. [Google Scholar] [CrossRef]
- Liu, M.; Tan, X.; Li, X.; Geng, J.; Han, M.; Wei, K.; Chen, X. Transparent superhydrophobic EVA/SiO2/PTFE/KH-570 coating with good mechanical robustness, chemical stability, self-cleaning effect and anti-icing property fabricated by facile dipping method. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130624. [Google Scholar] [CrossRef]
- Yang, J.; He, T.; Li, X.; Wang, R.; Wang, S.; Zhao, Y.; Wang, H. Rapid dipping preparation of superhydrophobic TiO2 cotton fabric for multifunctional highly efficient oil-water separation and photocatalytic degradation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130590. [Google Scholar] [CrossRef]
- Luo, M.; Sun, X.; Zheng, Y.; Cui, X.; Ma, W.; Han, S.; Wei, X. Non-fluorinated superhydrophobic film with high transparency for photovoltaic glass covers. Appl. Surf. Sci. 2023, 609, 155299. [Google Scholar] [CrossRef]
- Yao, T.; Song, J.; Gan, Y.; Qiao, L.; Du, K. Preparation of cellulose-based chromatographic medium for biological separation: A review. J. Chromatogr. A 2022, 1677, 463297. [Google Scholar] [CrossRef]
- Dan, Z.; Guolin, Z.; Chuang, Z.; Yuhe, W.; Zhu, L. Preparation and characterization of wear-resistant superhydrophobic cotton fabrics. Prog. Org. Coat. 2019, 134, 226–233. [Google Scholar] [CrossRef]
- Wang, H.; Meng, J.; Li, F.; Li, T. Graphitic carbon nitride/metal-organic framework composite functionalized cotton for efficient oil-water separation and dye degradation. J. Clean. Prod. 2023, 385, 135758. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Qin, L.; Liu, Z.; Liu, T.; Liu, S.; Zhang, J.; Wu, J.; Liang, X. A bioinspired, strong, all-natural, superhydrophobic cellulose-based straw. Int. J. Biol. Macromol. 2022, 220, 910–919. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, Y.; Song, C.; Zhu, Y.; Song, C.; Fan, X.; You, Z. One-step preparation of efficient SiO2/PVDF membrane by sol-gel strategy for oil/water separation under harsh environments. Polymer 2022, 260, 125402. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Cao, Q.; Wang, C.; Yang, C.; Li, Y.; Zhou, J. Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton. Sci. Total Environ. 2020, 706, 135807. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Raza, S.; Wang, P.; Zhu, Z.; Zhang, J.; Huang, W.; Liu, C. Robust super hydrophobic cotton fabrics functionalized with Ag and PDMS for effective antibacterial activity and efficient oil–water separation. J. Environ. Chem. Eng. 2021, 9, 106083. [Google Scholar] [CrossRef]
- Li, F.; Bhushan, B.; Pan, Y.; Zhao, X. Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil-water mixtures and oil-water emulsions. J. Colloid Interface Sci. 2019, 548, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Prasanthi, I.; Raidongia, K.; Datta, K.K.R. Super-wetting properties of functionalized fluorinated graphene and its application in oil–water and emulsion separation. Mater. Chem. Front. 2021, 5, 6244–6255. [Google Scholar] [CrossRef]
- Qiu, S.; Bi, H.; Hu, X.; Wu, M.; Li, Y.; Sun, L. Moldable clay-like unit for synthesis of highly elastic polydimethylsiloxane sponge with nanofiller modification. RSC Adv. 2017, 7, 10479–10486. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, D.; Liu, E. Facile Fabrication of Robust and Fluorine-Free Superhydrophobic PDMS/STA-Coated Cotton Fabric for Highly Efficient Oil-Water Separation. Coatings 2023, 13, 954. https://doi.org/10.3390/coatings13050954
Tang D, Liu E. Facile Fabrication of Robust and Fluorine-Free Superhydrophobic PDMS/STA-Coated Cotton Fabric for Highly Efficient Oil-Water Separation. Coatings. 2023; 13(5):954. https://doi.org/10.3390/coatings13050954
Chicago/Turabian StyleTang, Daibin, and Enzhou Liu. 2023. "Facile Fabrication of Robust and Fluorine-Free Superhydrophobic PDMS/STA-Coated Cotton Fabric for Highly Efficient Oil-Water Separation" Coatings 13, no. 5: 954. https://doi.org/10.3390/coatings13050954
APA StyleTang, D., & Liu, E. (2023). Facile Fabrication of Robust and Fluorine-Free Superhydrophobic PDMS/STA-Coated Cotton Fabric for Highly Efficient Oil-Water Separation. Coatings, 13(5), 954. https://doi.org/10.3390/coatings13050954