High-Frequency Conductivity of Amorphous and Crystalline Sb2Te3 Thin Films
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.J.; Hwang, Y.; Jeong, J.C.; Kim, J.H. Fabrication of molded chalcogenide-glass lens for thermal imaging applications. Appl. Opt. 2012, 51, 5649–5656. [Google Scholar] [CrossRef]
- Snopatin, G.E.; Shiryaev, V.S.; Plotnichenko, V.G.; Dianov, E.M.; Churbanov, M.F. High-Purity chalcogenide glasses for fiber optics. Inorg. Mater. 2009, 45, 1439–1460. [Google Scholar] [CrossRef]
- Charrier, J.; Brandily, M.L.; Lhermite, H.; Michel, K.; Bureau, B.; Verger, F.; Nazabal, V. Evanescent wave optical micro-sensor based on chalcogenide glass. Sens. Actuators B Chem. 2012, 173, 468–476. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, W.; Yu, Y.; Zhai, C.; Qi, S.; Yang, A.; Luther-Davies, B. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation. J. Am. Ceram. Soc. 2015, 98, 1389–1392. [Google Scholar] [CrossRef]
- Kumar, S.; Mehta, B.R.; Kashyap, S.C.; Chopra, K.L. Amorphous chalcogenide thin-film Schottky barrier (Bi/As2Se3: Bi) solar cell. Appl. Phys. Lett. 1988, 52, 24–26. [Google Scholar] [CrossRef]
- Abd El-Salam, F.; Afify, M.A.; Abd El-Wahabb, E. Thickness and temperature dependence of the electrical resistivity of amorphous Sb2Se3 films. Vacuum 1993, 44, 1009–1013. [Google Scholar] [CrossRef]
- Fadel, M.; Hegab, N.A.; Abd El-Wahabb, E. Temperature and light soaking dependence of the dc electrical conductivity of binary amorphous Sb–Se Films. Vacuum 1999, 53, 367–372. [Google Scholar] [CrossRef]
- Wei, M.; Shi, X.L.; Zheng, Z.H.; Li, F.; Liu, W.D.; Xiang, L.P.; Chen, Z.G. Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility. Adv. Funct. Mater. 2022, 32, 2207903. [Google Scholar] [CrossRef]
- Wang, X.P.; Li, X.B.; Chen, N.K.; Chen, B.; Rao, F.; Zhang, S. Phase-change-memory process at the limit: A proposal for utilizing monolayer Sb2Te3. Adv. Sci. 2021, 8, 2004185. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, W.; Li, Z.; Li, K.; Wu, L.; Zhou, J.; Sun, Z. Y-doped Sb2Te3 phase-change materials: Toward a universal memory. ACS Appl. Mater. Interfaces 2020, 12, 20672–20679. [Google Scholar] [CrossRef]
- Sosso, G.C.; Caravati, S.; Bernasconi, M. Vibrational properties of crystalline Sb2Te3 from first principles. J. Phys. Condens. Matter 2009, 21, 095410. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Wang, J.; Xu, Y.; Xin, T.; Song, Z.; Pohlmann, M.; Zhang, W. Layer-switching mechanisms in Sb2Te3. Phys. Status Solidi RRL Rapid Res. Lett. 2019, 13, 1900320. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, J.; Yu, G.; Ma, S.; Wang, Y.; Wang, Y. Thermoelectric properties of monolayer Sb2Te3. J. Appl. Phys. 2018, 124, 165104. [Google Scholar] [CrossRef]
- Farid, A.M.; Atyia, H.E.; Hegab, N.A. AC conductivity and dielectric properties of Sb2Te3 thin films. Vacuum 2005, 80, 284–294. [Google Scholar] [CrossRef]
- Ulutas, K.; Deger, D.; Yakut, S. Thickness dependence of the dielectric properties of thermally evaporated Sb2Te3 thin films. J. Phys. Conf. Ser. 2013, 417, 012040. [Google Scholar] [CrossRef]
- Elliott, S.R. Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 1987, 36, 135–217. [Google Scholar] [CrossRef]
- Jonscher, A.K. The ‘universal’ dielectric response. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Long, A.R. Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 1982, 31, 553–637. [Google Scholar] [CrossRef]
- Austin, I.G.; Mott, N.F. Polarons in crystalline and non-crystalline materials. Adv. Phys. 1969, 18, 41–102. [Google Scholar] [CrossRef]
- Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, UK, 2012; 608p. [Google Scholar]
- Saito, Y.; Fons, P.; Kolobov, A.V.; Mitrofanov, K.V.; Makino, K.; Tominaga, J.; Robertson, J. High-quality sputter-grown layered chalcogenide films for phase change memory applications and beyond. J. Phys. D Appl. Phys. 2020, 53, 284002. [Google Scholar] [CrossRef]
- Nikonorova, N.A.; Balakina, M.Y.; Fominykh, O.D.; Sharipova, A.V.; Vakhonina, T.A.; Nazmieva, G.N.; Yakimansky, A.V. Dielectric spectroscopy and molecular modeling of branched methacrylic (co) polymers containing nonlinear optical chromophores. Mater. Chem. Phys. 2016, 181, 217–226. [Google Scholar] [CrossRef]
- Castro, R.A.; Ignatiev, A.I.; Nikonorov, N.V.; Sidorov, A.I.; Stolyarchuk, M.V. Dielectric properties of silver-containing photo-thermo-refractive glass in temperature range of −50 to +250 °C: The role of hybrid molecular clusters. J. Non-Cryst. Solids 2017, 461, 72–79. [Google Scholar] [CrossRef]
- Kononov, A.A.; Castro, R.A.; Glavnaya, D.D.; Anisimova, N.I.; Bordovsky, G.A.; Kolobov, A.V.; Fons, P. Dielectric relaxation and charge transfer in amorphous MoS2 thin films. Phys. Status Solidi B 2020, 257, 2000114. [Google Scholar] [CrossRef]
- Castro, R.A.; Grabko, G.I.; Kononov, A.A. Low-Frequency Dielectric Relaxation in Iron-Doped Ge28.5Pb15S56.5 Glassy System. Semiconductors 2018, 52, 1160–1162. [Google Scholar] [CrossRef]
- Elliott, S.R. Temperature dependence of ac conductivity of chalcogenide glasses. Philos. Mag. B 1978, 37, 553–560. [Google Scholar] [CrossRef]
- Angell, C.A. Mobile ions in amorphous solids. Annu. Rev. Phys. Chem. 1992, 43, 693–717. [Google Scholar] [CrossRef]
- Lee, T.H.; Elliott, S.R. Chemical bonding in chalcogenides: The concept of multicenter hyperbonding. Adv. Mater. 2020, 32, 2000340. [Google Scholar] [CrossRef]
- Kononov, A.A.; Castro, R.A.; Saito, Y.; Fons, P.; Bordovsky, G.A.; Anisimova, N.I.; Kolobov, A.V. Dielectric relaxation in amorphous and crystalline Sb2Te3 thin films. J. Mater. Sci. Mater. Electron. 2021, 32, 14072–14078. [Google Scholar] [CrossRef]
- Zheng, Y.; Xia, M.; Cheng, Y.; Rao, F.; Ding, K.; Liu, W.; Feng, S. Direct observation of metastable face-centered cubic Sb2Te3 crystal. Nano Res. 2016, 9, 3453–3462. [Google Scholar] [CrossRef]
T (K) | s | N (m−3) | Rω (Å) | WM (eV) |
---|---|---|---|---|
amorphous material | ||||
263 | 0.79 | 2.73 × 1026 | 3.26 | 0.68 |
273 | 0.72 | 1.31 × 1025 | 9.44 | 0.51 |
283 | 0.64 | 3.45 × 1023 | 33.35 | 0.40 |
293 | 0.58 | 1.19 × 1025 | 10.57 | 0.36 |
303 | 0.56 | 2.85 × 1025 | 7.95 | 0.35 |
crystalline material | ||||
263 | 0.83 | 1.71 × 1026 | 3.22 | 0.81 |
273 | 0.79 | 6.17 × 1025 | 4.69 | 0.69 |
283 | 0.75 | 1.16 × 1025 | 8.52 | 0.58 |
293 | 0.69 | 2.56 × 1023 | 31.90 | 0.49 |
303 | 0.61 | 9.28 × 1023 | 21.97 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, R.; Kononov, A.; Anisimova, N. High-Frequency Conductivity of Amorphous and Crystalline Sb2Te3 Thin Films. Coatings 2023, 13, 950. https://doi.org/10.3390/coatings13050950
Castro R, Kononov A, Anisimova N. High-Frequency Conductivity of Amorphous and Crystalline Sb2Te3 Thin Films. Coatings. 2023; 13(5):950. https://doi.org/10.3390/coatings13050950
Chicago/Turabian StyleCastro, Rene, Aleksei Kononov, and Nadezhda Anisimova. 2023. "High-Frequency Conductivity of Amorphous and Crystalline Sb2Te3 Thin Films" Coatings 13, no. 5: 950. https://doi.org/10.3390/coatings13050950
APA StyleCastro, R., Kononov, A., & Anisimova, N. (2023). High-Frequency Conductivity of Amorphous and Crystalline Sb2Te3 Thin Films. Coatings, 13(5), 950. https://doi.org/10.3390/coatings13050950