Modeling of Ionizing Radiation Effects for Negative Capacitance Field-Effect Transistors
Abstract
1. Introduction
2. Physical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salahuddin, S.; Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 2008, 8, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.I.; Chatterjee, K.; Wang, B.; Drapcho, S.; You, L.; Serrao, C.; Bakaul, S.R.; Ramesh, R.; Salahuddin, S. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 2015, 14, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Khan, A.; Marti, X.; Nelson, C.; Serrao, C.; Ravichandran, J.; Ramesh, R.; Salahuddin, S. Room-temperature negative capacitance in a ferroelectric–dielectric superlattice heterostructure. Nano Lett. 2014, 14, 5814–5819. [Google Scholar] [CrossRef]
- Cheng, P.H.; Yin, Y.T.; Tsai, I.N.; Lu, C.H.; Li, L.J.; Pan, S.C.; Shieh, J.; Shiojiri, M.; Chen, M.J. Negative capacitance from the inductance of ferroelectric switching. Commun. Phys. 2019, 2, 32. [Google Scholar] [CrossRef]
- Hoffmann, M.; Fengler, F.P.G.; Herzig, M.; Mittmann, T.; Max, B.; Schroeder, U.; Negrea, R.; Lucian, P.; Slesazeck, S.; Mikolajick, T. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 2019, 565, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Zubko, P.; Wojdeł, J.C.; Hadjimichael, M.; Fernandez-Pena, S.; Sené, A.; Luk’yanchuk, I.; Triscone, J.-M.; Íñiguez, J.J.N. Negative capacitance in multidomain ferroelectric superlattices. Nature 2016, 534, 524–528. [Google Scholar] [CrossRef]
- Hoffmann, M.; Khan, A.I.; Serrao, C.; Lu, Z.; Salahuddin, S.; Pešić, M.; Slesazeck, S.; Schroeder, U.; Mikolajick, T. Ferroelectric negative capacitance domain dynamics. J. Appl. Phys. 2018, 123, 184101. [Google Scholar] [CrossRef]
- Yadav, A.K.; Nguyen, K.X.; Hong, Z.; García-Fernández, P.; Aguado-Puente, P.; Nelson, C.T.; Das, S.; Prasad, B.; Kwon, D.; Cheema, S.J.N. Spatially resolved steady-state negative capacitance. Nature 2019, 565, 468–471. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Chen, P.-J.; Hsu, C.-C.; Ruan, D.-B.; Hou, F.-J.; Peng, P.-Y.; Wu, Y.-C. Atomic-level analysis of sub-5-nm-thick Hf0.5Zr0.5O2 and characterization of nearly hysteresis-free ferroelectric FinFET. IEEE Electron Device Lett. 2019, 40, 1233–1236. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chen, H.W.; Shen, C.H.; Kuo, P.Y.; Chung, C.C.; Huang, Y.E.; Chen, H.Y.; Chao, T.S. Experimental Demonstration of Stacked Gate- All-Around Poly-Si Nanowires Negative Capacitance FETs With Internal Gate Featuring Seed Layer and Free of Post-Metal Annealing Process. IEEE Electron Device Lett. 2019, 40, 1708–1711. [Google Scholar] [CrossRef]
- Si, M.; Jiang, C.; Su, C.-J.; Tang, Y.-T.; Yang, L.; Chung, W.; Alam, M.; Ye, P. Sub-60 mV/dec ferroelectric HZO MoS2 negative capacitance field-effect transistor with internal metal gate: The role of parasitic capacitance. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 23.5. 1–23.5. 4. [Google Scholar]
- Zhou, J.; Han, G.; Li, Q.; Peng, Y.; Lu, X.; Zhang, C.; Zhang, J.; Sun, Q.-Q.; Zhang, D.W.; Hao, Y. Ferroelectric HfZrOx Ge and GeSn PMOSFETs with Sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved Ids. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 12.2.1–12.2.4. [Google Scholar]
- Saha, A.K.; Datta, S.; Gupta, S.K. “Negative capacitance” in resistor-ferroelectric and ferroelectric-dielectric networks: Apparent or intrinsic? J. Appl. Phys. 2018, 123, 105102. [Google Scholar] [CrossRef]
- Kwon, D.; Liao, Y.-H.; Lin, Y.-K.; Duarte, J.P.; Chatterjee, K.; Tan, A.J.; Yadav, A.K.; Hu, C.; Krivokapic, Z.; Salahuddin, S. Response speed of negative capacitance FinFETs. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018; pp. 49–50. [Google Scholar]
- Krivokapic, Z.; Rana, U.; Galatage, R.; Razavieh, A.; Aziz, A.; Liu, J.; Shi, J.; Kim, H.; Sporer, R.; Serrao, C. 14 nm ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 15.1. 1–15.1. 4. [Google Scholar]
- Sun, S.L.; Ma, Y.; Zhou, Y.C.; Wu, C.L.; Li, J.C. A numerical model for the leakage characteristics in ferroelectric thin films under ionizing radiation. Radiat. Eff. Defects Solids 2014, 169, 538–546. [Google Scholar] [CrossRef]
- Chong, C.; Liu, H.; Wang, S.; Wu, X. Research on Total Ionizing Dose Effect and Reinforcement of SOI-TFET. Micromachines 2021, 12, 1232. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Naugarhiya, A.; Mishra, G.P. Analysis of total ionizing dose response of optimized fin geometry workfunction modulated SOI-FinFET. Microelectron. Reliab. 2022, 134, 114549. [Google Scholar] [CrossRef]
- Cui, X.; Cui, J.-W.; Zheng, Q.-W.; Wei, Y.; Li, Y.-D.; Guo, Q. Bias dependence of total ionizing dose effects in 22 nm bulk nFinFETs. Radiat. Eff. Defects Solids 2022, 177, 372–382. [Google Scholar] [CrossRef]
- Morozzi, A.; Hoffmann, M.; Slesazeck, S.; Mulargia, R.; Robutti, E. TCAD numerical modeling of negative capacitance ferroelectric devices for radiation detection applications. Solid-State Electron. 2022, 194, 108341. [Google Scholar] [CrossRef]
- Bajpai, G.; Gupta, A.; Prakash, O.; Pahwa, G.; Henkel, J.; Chauhan, Y.S.; Amrouch, H. Impact of radiation on negative capacitance finfet. In Proceedings of the 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 28 April–30 May 2020; pp. 1–5. [Google Scholar]
- Tyagi, K.; Verma, A.; Dutta, A.K. Modeling of the Gate Tunneling Current in MFIS NCFETs. IEEE Trans. Electron Devices 2021, 68, 5886–5893. [Google Scholar] [CrossRef]
- Khan, A.I.; Radhakrishna, U.; Chatterjee, K.; Salahuddin, S.; Antoniadis, D.A. Negative Capacitance Behavior in a Leaky Ferroelectric. IEEE Trans. Electron Devices 2016, 63, 4416–4422. [Google Scholar] [CrossRef]
- Pahwa, G.; Dutta, T.; Agarwal, A.; Khandelwal, S.; Salahuddin, S.; Hu, C.; Chauhan, Y.S. Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and Negative Output Differential Resistance—Part I: Model Description. IEEE Trans. Electron Devices 2016, 63, 4981–4985. [Google Scholar] [CrossRef]
- Pahariya, A.; Dutta, A.K. A New Surface Potential-Based Analytical Model for MFIS NCFETs. IEEE Trans. Electron Devices 2022, 69, 870–877. [Google Scholar] [CrossRef]
- Yan, S.A.; Li, G.; Zhao, W.; Guo, H.X.; Xiong, Y.; Tang, M.H.; Li, Z.; Xiao, Y.G.; Zhang, W.L.; Lei, Z.F.; et al. Ionizing radiation effect on metal–ferroelectric–insulator–semiconductor memory capacitors. Semicond. Sci. Technol. 2015, 30, 085020. [Google Scholar] [CrossRef]
- Chauhan, R.K.; Dasgupta, S.; Chakrabarti, P. A pseudo-two-dimensional model of ann-channel MOSFET under the influence of ionizing radiation. Semicond. Sci. Technol. 2002, 17, 961–968. [Google Scholar] [CrossRef]
- Yan, S.A.; Li, G.; Guo, H.X.; Zhao, W.; Xiong, Y.; Tang, M.H.; Li, Z.; Xiao, Y.G.; Zhang, W.L.; Lei, Z.F. Modeling and simulation of ionizing radiation effect on ferroelectric field-effect transistor. Jpn. J. Appl. Phys. 2016, 55, 048001. [Google Scholar] [CrossRef]
- Batyrev, I.G.; Hughart, D.; Durand, R.; Bounasser, M.; Tuttle, B.R.; Fleetwood, D.M.; Schrimpf, R.D.; Rashkeev, S.N.; Dunham, G.W.; Law, M.; et al. Effects of Hydrogen on the Radiation Response of Bipolar Transistors: Experiment and Modeling. IEEE Trans. Nucl. Sci. 2008, 55, 3039–3045. [Google Scholar] [CrossRef]
- Xiao, Y.G.; Ma, D.B.; Wang, J.; Li, G.; Yan, S.A.; Zhang, W.L.; Li, Z.; Tang, M.H. An improved model for the surface potential and drain current in negative capacitance field effect transistors. RSC Adv. 2016, 6, 103210–103214. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, X.J. Modeling of MFIS-FETs for the Application of Ferroelectric Random Access Memory. IEEE Trans. Electron Devices 2011, 58, 3559–3565. [Google Scholar] [CrossRef]
- Liu, B.L.; Huang, X.Q.; Jiao, Y.X.; Feng, N.; Chen, X.H.; Rong, Z.; Lin, X.N.; Zhang, L.N.; Cui, X.L. Channel doping effects in negative capacitance field-effect transistors. Solid-State Electron. 2021, 186, 108181. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Da, X.; Cao, H.; Xiong, K.; Li, G.; Tang, M. Modeling of Ionizing Radiation Effects for Negative Capacitance Field-Effect Transistors. Coatings 2023, 13, 798. https://doi.org/10.3390/coatings13040798
Xiao Y, Da X, Cao H, Xiong K, Li G, Tang M. Modeling of Ionizing Radiation Effects for Negative Capacitance Field-Effect Transistors. Coatings. 2023; 13(4):798. https://doi.org/10.3390/coatings13040798
Chicago/Turabian StyleXiao, Yongguang, Xianghua Da, Haize Cao, Ke Xiong, Gang Li, and Minghua Tang. 2023. "Modeling of Ionizing Radiation Effects for Negative Capacitance Field-Effect Transistors" Coatings 13, no. 4: 798. https://doi.org/10.3390/coatings13040798
APA StyleXiao, Y., Da, X., Cao, H., Xiong, K., Li, G., & Tang, M. (2023). Modeling of Ionizing Radiation Effects for Negative Capacitance Field-Effect Transistors. Coatings, 13(4), 798. https://doi.org/10.3390/coatings13040798