Studying the Effects of Annealing and Surface Roughness on Both the Magnetic Property and Surface Energy of Co60Fe20Sm20 Thin Films on Si(100) Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XRD Structure Property
3.2. Contact Angle and Surface Energy
3.3. Electrical Properties
3.4. Hardness and Young’s Modulus
3.5. Magnetic Property
3.6. Surface Characterization of Magnetic Domains in the Thin Film
3.7. Characterization of Surface Roughness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Qin, L. Effects of sputtering parameters and annealing temperatures on magnetic properties of CoFeB films. J. Magn. Magn. Mater. 2021, 538, 168302. [Google Scholar] [CrossRef]
- Skomski, R.; Coey, J. Magnetic anisotropy—How much is enough for a permanent magnet? Scr. Mater. 2016, 112, 3–8. [Google Scholar] [CrossRef]
- Cui, J.; Kramer, M.; Zhou, L.; Liu, F.; Gabay, A.; Hadjipanayis, G.; Balasubramanian, B.; Sellmyer, D. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 2018, 158, 118–137. [Google Scholar] [CrossRef]
- Rachid, F.; Omari, L.; Yamkane, Z.; Lassri, H.; Derkaoui, S.; Nouri, K.; Bouzidi, W.; Bessais, L. Annealing effect on structural, microstructural and magnetic properties of nanocrystalline Er-Co-B alloys for permanent magnet applications. Mater. Chem. Phys. 2019, 228, 60–65. [Google Scholar] [CrossRef]
- Zhang, W.-Y.; Zhang, X.-D.; Yang, Y.-C.; Shen, B.-G. Effect of Cu substitution on structure and magnetic properties of anisotropic SmCo ribbons. J. Alloys Compd. 2003, 353, 274–277. [Google Scholar] [CrossRef]
- Popov, A.; Golovnia, O.; Protasov, A.; Gaviko, V.; Kolodkin, D.; Gopalan, R. Coercivity kinetics upon step annealing of sintered Sm(Co0.88–Fe Cu0.09Zr0.03)7 magnets. J. Rare Earths 2019, 37, 1059–1065. [Google Scholar] [CrossRef]
- Suresh, K.; Gopalan, R.; Rao, D.; Singh, A.; Bhikshamaiah, G.; Muraleedharan, K.; Chandrasekaran, V. Microstructure and coercivity variation in melt-spun Sm–Co–Fe–Zr ribbons. Intermetallics 2010, 18, 2244–2249. [Google Scholar] [CrossRef]
- Coïsson, M.; Celegato, F.; Tiberto, P.; Vinai, F. Magnetic properties of field annealed FeCo thin films. J. Magn. Magn. Mater. 2008, 320, e739–e742. [Google Scholar] [CrossRef]
- Gopalan, R.; Ping, D.H.; Hono, K.; Huang, M.Q.; Smith, B.R.; Chen, Z.; Ma, B.M. Microstructure and magnetic properties of melt-spun Sm(Co0.58Fe0.31Cu0.04Zr0.05B0.02)z ribbons. J. Appl. Phys. 2004, 95, 4962–4967. [Google Scholar] [CrossRef]
- Hua, Y.; Lou, L.; Jiang, B.; Kou, J.; Wang, J.; Li, T.; Gao, J.; Zhang, Q.; Li, X. Effect of Co Content on Microstructures and Magnetic Properties of Anisotropic Bulk TbCu7-type Sm-Co Nanocrystalline Magnets. IEEE Trans. Magn. 2019, 56, 2100104. [Google Scholar] [CrossRef]
- Saito, T.; Hamane, D.N. Magnetic properties of SmCo5−xFex (x = 0–4) melt-spun ribbon. J. Alloys Compd. 2014, 585, 423–427. [Google Scholar] [CrossRef]
- Xi, L.; Du, J.; Zhou, J.; Ma, J.; Li, X.; Wang, Z.; Zuo, Y.; Xue, D. Soft magnetic property and magnetization reversal mechanism of Sm doped FeCo thin film for high-frequency application. Thin Solid Film. 2012, 520, 5421–5425. [Google Scholar] [CrossRef]
- Hashim, M.; Boda, N.; Ahmed, A.; Sharma, S.K.; Ravinder, D.; Sumalatha, E.; Ul-Hamid, A.; Ismail, M.M.; Chaman, M.; Shirsath, S.E.; et al. Influence of samarium doping on structural, elastic, magnetic, dielectric, and electrical properties of nanocrystalline cobalt ferrite. Appl. Phys. A 2021, 127, 526. [Google Scholar] [CrossRef]
- Wang, H.W.; Wang, S.; Cao, Y.; Liu, T.; Zhang, Y. Structure and magnetic properties of alnico alloy doped SmCo5–xCux ribbons. J. Magn. Magn. Mater. 2021, 528, 167821. [Google Scholar] [CrossRef]
- Anwar, M.; Kayani, Z.; Hassan, A.; Riaz, S.; Naseem, S. Managing the micro-structure and properties of Sm-ZnO thin films by tuning the contents of Sm. Phys. B Condes. Matter 2023, 662, 414964. [Google Scholar] [CrossRef]
- Gayen, A.; Modak, R.; Srinivasan, A.; Srinivasu, V.V.; Alagarsamy, P. Thickness dependent magneto-static and magneto-dynamic properties of CoFeB thin films. J. Vac. Sci. Technol. A 2019, 37, 031513. [Google Scholar] [CrossRef]
- Grassi, M.; Geilen, M.; Louis, D.; Mohseni, M.; Brächer, T.; Hehn, M.; Stoeffler, D.; Bailleul, M.; Pirro, P.; Henry, Y. Slow-Wave-Based Nanomagnonic Diode. Phys. Rev. Appl. 2020, 14, 024047. [Google Scholar] [CrossRef]
- Meng, H.; Lum, W.; Sbiaa, R.; Lua, S.; Tan, H.K. Annealing effects on CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy. J. Appl. Phys. 2011, 110, 033904. [Google Scholar] [CrossRef]
- Vértesy, G.; Gasparics, A.; Griffin, J.M.; Mathew, J.; Fitzpatrick, M.E.; Uytdenhouwen, I. Analysis of Surface Roughness Influence in Non-Destructive Magnetic Measurements Applied to Reactor Pressure Vessel Steels. Appl. Sci. 2020, 10, 8938. [Google Scholar] [CrossRef]
- Favieres, C.; Vergara, J.; Madurga, V. Surface Roughness Influence on Néel-, Crosstie, and Bloch-Type Charged Zigzag Magnetic Domain Walls in Nanostructured Fe Films. Materials 2020, 13, 4249. [Google Scholar] [CrossRef]
- Liu, W.J.; Chang, Y.H.; Chiang, C.C.; Chen, Y.T.; Wang, Y.Z.; Wu, C.L.; Lin, S.H.; Ou, S.L. Thickness, annealing, and surface roughness effect on magnetic and significant properties of Co40Fe40B10Dy10 thin films. Materials 2023, 16, 5995. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Chung, T.; Good, R.J. Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. J. Polym. Sci. 1998, 36, 2327–2337. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Kaelble, D.H.; Uy, K.C. A Reinterpretation of Organic Liquid-Polytetrafluoroethylene Surface Interactions. J. Adhes. 1970, 2, 50–60. [Google Scholar] [CrossRef]
- Novaković, M.; Popović, M.; Rajić, V. Study on the structural and magnetic properties of e-beam evaporated Co thin films annealed in vacuum. J. Alloys Compd. 2023, 937, 168411. [Google Scholar] [CrossRef]
- Li, G.; Du, J.; Wang, H.; Wang, Q.; Ma, Y.; He, J. High magnetic field induced pillar growth and subsequent magnetic properties of the thermal evaporated Co thin films. Mater. Lett. 2014, 133, 53–56. [Google Scholar] [CrossRef]
- Lan, T.T.B.; Chang, C.-W.; Kuo, M.-R.; Sun, A.A.-C. Strengthening the magnetic properties of Pr-Fe-B thin films using biased substrate. Colloids Surfaces A: Physicochem. Eng. Asp. 2022, 646, 128925. [Google Scholar] [CrossRef]
- Gu, S.; Ji, B.; Wang, C.; Qi, Q.; Zhou, H.-S.; Zhang, Y.; Luo, G.-N. Effects of long-term annealing-induced microstructure evolution on mechanical performance and deuterium release behavior of Li4SiO4 pebbles. Nucl. Fusion 2023, 63, 046006. [Google Scholar] [CrossRef]
- Ramos, R.D.; Boratto, M.H.; Li, M.S.; Scalvi, L.V. Emission Properties Related to Distinct Phases of Sol-Gel Dip-Coating Titanium Dioxide, and Carrier Photo-Excitation in Different Energy Ranges. Mater. Res. 2017, 20, 866–873. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Terabe, K.; Ochi, M.; Higuchi, T.; Osada, M.; Ymashita, Y.; Ueda, S.; Aono, M. In situ tuning of magnetization and magnetoresistance in Fe3O4 thin film achieved with all-solid-state redox device. ACS Nano 2016, 10, 1655–1661. [Google Scholar] [CrossRef]
- Xiang, H.; Shi, F.; Rzchowski, M.; Voyles, P.; Chang, Y.A. Epitaxial growth and magnetic properties of Fe3O4 films on TiN buffered Si(001), Si(110), and Si(111) substrates. Appl. Phys. Lett. 2010, 97, 092508. [Google Scholar] [CrossRef]
- Ishibe, T.; Maeda, Y.; Terada, T.; Naruse, N.; Mera, Y.; Kobayashi, E.; Nakamura, Y. Resistive switching memory performance in oxide hetero-nanocrystals with well-controlled interfaces. Sci. Technol. Adv. Mater. 2020, 21, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Nyong, A.; Rohatgi, P. Underwater Superoleophobicity Induced by the Thickness of the Thermally Grown Porous Oxide Layer on C84400 Copper Alloy. Appl. Sci. 2014, 4, 42–54. [Google Scholar] [CrossRef]
- Kitamura, M.; Kuzumoto, Y.; Kamura, M.; Aomori, S.; Na, J.; Arakawa, Y. Low-voltage-operating fullerene C60 thin-film transistors with various surface treatments. Phys. Stat. Sol. 2008, 5, 3181–3183. [Google Scholar] [CrossRef]
- Beaini, S.S.; Kronawitter, C.X.; Carey, V.P.; Mao, S.S. ZnO deposition on metal substrates: Relating fabrication, morphology, and wettability. J. Appl. Phys. 2013, 113, 184905. [Google Scholar] [CrossRef]
- Azizian-Kalandaragh, Y.; Nouhi, S.; Amiri, M. Effect of post-annealing treatment on the wetting, optical and structural properties of Ag/Indium tin oxide thin films prepared by electron beam evaporation technique. Mater. Express 2015, 5, 137–145. [Google Scholar] [CrossRef]
- Vengesa, Y.; Fattah-Alhosseini, A.; Elmkhah, H.; Imantalab, O.; Keshavarz, M.K. Investigation of corrosion and tribological characteristics of annealed CrN/CrAlN coatings deposited by CAE-PVD. Ceram. Int. 2023, 49, 3016–3029. [Google Scholar] [CrossRef]
- Misyura, S.Y.; Andryushchenko, V.A.; Morozov, V.S. The influence of copper substrate temperature on the wettability of graphene coating. Surf. Innov. 2023, 11, 272–284. [Google Scholar] [CrossRef]
- Madadi, F.; Rezaeian, A.; Edris, H.; Zhiani, M. Influence of surface roughness and hydrophobicity of bipolar plates on PEM performance. Surf. Coat. Technol. 2020, 389, 125676. [Google Scholar] [CrossRef]
- Kalin, M.; Polajnar, M. The wetting of steel, DLC coatings, ceramics and polymers with oils and water: The importance and correlations of surface energy, surface tension, contact angle and spreading. Appl. Surf. Sci. 2014, 293, 97–108. [Google Scholar] [CrossRef]
- Kunwar, S.; Pandey, P.; Sui, M.; Zhang, Q.; Li, M.-Y.; Lee, J. Effect of Systematic Control of Pd Thickness and Annealing Temperature on the Fabrication and Evolution of Palladium Nanostructures on Si (111) via the Solid State Dewetting. Nanoscale Res. Lett. 2017, 12, 364. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Ponte, F.; Lima, M.; Figueiredo, N.; Ferreira, J.; Carvalho, S. Plasma etching of polycarbonate surfaces for improved adhesion of Cr coatings. Appl. Surf. Sci. 2023, 637, 157903. [Google Scholar] [CrossRef]
- Kalpana, H.M.; Prasad, V.S.; Nayak, M.M. Influence of annealing and thickness on the electrical properties of invar36 thin film for strain gauge applications. Int. J. Thin Film. Sci. Technol. 2013, 2, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zhang, A.; Zhao, A.; Yang, P. Influence of annealing temperature on optical properties of sandwiched ZnO/Metal/ZnO transparent conductive thin films. Micromachines 2022, 13, 296. [Google Scholar] [CrossRef]
- Butt, M.Z.; Ali, D.; Tanveer, M.; Naseem, S. Surface roughness and electrical resistivity of high-purity zinc irradiated with nanosecond visible laser pulses. Appl. Sur. Sci. 2014, 305, 466–473. [Google Scholar] [CrossRef]
- Marom, H.; Eizenberg, M. The effect of surface roughness on the resistivity increase in nanometric dimensions. J. Appl. Phys. 2006, 99, 123705. [Google Scholar] [CrossRef]
- Aihaiti, L.; Tuokedaerhon, K.; Saden, B.; Zhang, M.; Shenm, X.; Mijito, A. Effect of annealing temperature on microstructure and resistivity of TiC thinfilms. Coatings 2021, 11, 457. [Google Scholar] [CrossRef]
- Wen, T.; Gong, J.; Peng, Z.; Jiang, D.; Wang, C.; Fu, Z.; Miao, H. Analysis of continuous stiffness data measured during nanoindentation of titanium films on glass substrate. Mater. Chem. Phys. 2011, 125, 500–504. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, D.; Fu, Y.; Du, H. Recent advances of superhard nanocomposite coatings: A review. Surf. Coat. Technol. 2003, 167, 113–119. [Google Scholar] [CrossRef]
- Sousa, W.; Guerra, Y.; Peña-Garcia, R.; Padrón-Hernández, E. Saturation magnetization as a function of temperature in Zn doped YIG nanoparticles. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 138, 115054. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Z.; Huang, Y.; Qiu, Y.; Dong, S. Magnetic, thermal, electrical properties and crystallization kinetics of Co60Fe20B20 alloy films. Sci. China Mater. 2016, 59, 639–647. [Google Scholar] [CrossRef]
- Pandey, M.K.; Kar, A.K. Effect of annealing temperature on the magnetic domain structure and surface mechanical properties of Ni-C composite thin films: Magnetic and lateral force microscopy, and force-distance spectroscopy. Mater. Lett. 2021, 301, 130295. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Sun, H.; Wang, G. Effects of Ti Target Purity and Microstructure on Deposition Rate, Microstructure and Properties of Ti Films. Materials 2022, 15, 2661. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Maeng, B.; Jung, D.; Lee, J.; Kim, Y.; Kwon, J.; An, H.; Jung, D. Annealing effects on SnO2 thin film for H2 Gas Sensing. Nanomaterials 2022, 12, 3227. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Chang, Y.H.; Chen, Y.T.; Chiu, P.C.; Guo, J.C.; Lin, S.H.; Chi, P.W. Effects of annealing and thickness of Co60Fe20Yb20 nanofilms on their structure, magnetic properties, electrical efficiency, and nanomechanical characteristics. Materials 2022, 15, 5184. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Chang, Y.H.; Chen, Y.T.; Tsai, D.Y.; Lu, P.X.; Lin, S.H.; Wu, T.H.; Chi, P.W. Effect of yttrium addition on structure and magnetic characteristics of Co60Fe20Y20 films. Materials 2021, 14, 6001. [Google Scholar] [CrossRef] [PubMed]
Materials | Surface Energy (mJ/mm2) | Maximum χac (a.u.) | Hardness (GPa) | Young’s Modulus (GPa) |
---|---|---|---|---|
Si(100)/Co60Fe20Yb20 [55] 10–50 nm at RT and annealed conditions | 22.1–31.4 | 0.01–0.21 | 9.3–15.9 | 190–234 |
Si(100)/Co60Fe20Y20 [56] 10–50 nm at RT and annealed conditions | 23.8–30.0 | 0.03–0.26 | x | x |
Si(100)/Co60Fe20Sm20 10–50 nm at RT and annealed conditions (Current research) | 25.2–33.1 | 0.01–0.12 | 11.3–16.1 | 173–197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.-J.; Chang, Y.-H.; Chiang, C.-C.; Chen, Y.-T.; Lu, P.-X.; He, Y.-J.; Lin, S.-H. Studying the Effects of Annealing and Surface Roughness on Both the Magnetic Property and Surface Energy of Co60Fe20Sm20 Thin Films on Si(100) Substrate. Coatings 2023, 13, 1783. https://doi.org/10.3390/coatings13101783
Liu W-J, Chang Y-H, Chiang C-C, Chen Y-T, Lu P-X, He Y-J, Lin S-H. Studying the Effects of Annealing and Surface Roughness on Both the Magnetic Property and Surface Energy of Co60Fe20Sm20 Thin Films on Si(100) Substrate. Coatings. 2023; 13(10):1783. https://doi.org/10.3390/coatings13101783
Chicago/Turabian StyleLiu, Wen-Jen, Yung-Huang Chang, Chia-Chin Chiang, Yuan-Tsung Chen, Pei-Xin Lu, Yu-Jie He, and Shih-Hung Lin. 2023. "Studying the Effects of Annealing and Surface Roughness on Both the Magnetic Property and Surface Energy of Co60Fe20Sm20 Thin Films on Si(100) Substrate" Coatings 13, no. 10: 1783. https://doi.org/10.3390/coatings13101783
APA StyleLiu, W.-J., Chang, Y.-H., Chiang, C.-C., Chen, Y.-T., Lu, P.-X., He, Y.-J., & Lin, S.-H. (2023). Studying the Effects of Annealing and Surface Roughness on Both the Magnetic Property and Surface Energy of Co60Fe20Sm20 Thin Films on Si(100) Substrate. Coatings, 13(10), 1783. https://doi.org/10.3390/coatings13101783