Structure and Mechanical Properties of Porous TiNi Alloys with Ag Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Results
3.1.1. XRD of Cross Sections TiNiAg Specimens
3.1.2. SEM Study of Polished TiNiAg Samples
3.1.3. TEM Image and EDS Elemental Mapping of Cross-Section of TiNiAg Alloy
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otsuka, K.; Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Eggeler, G.; Hornbogen, E.; Yawny, A.; Heckmann, A.; Wagner, M. Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 2004, 378, 24–33. [Google Scholar] [CrossRef]
- Monogenov, A.N.; Marchenko, E.S.; Baigonakova, G.A.; Yasenchuk, Y.F.; Garin, A.S.; Volinsky, A.A. Improved mechanical properties of porous nitinol by aluminum alloying. J. Alloy. Compd. 2022, 918, 165617. [Google Scholar] [CrossRef]
- Baigonakova, G.A.; Marchenko, E.S.; Chekalkin, T.L.; Kang, J.H.; Weiss, S.; Obrosov, A. Influence of silver addition on structure, martensite transformations and mechanical properties of TiNiAg alloy wires for biomedical application. Materials 2020, 13, 4721. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, E.S.; Baigonakova, G.A.; Gunther, V.E. Effect of alloying of titanium nickelide-based alloys with group v elements (Vanadium, niobium) on their mechanical properties. Russ. Metall. 2018, 2018, 990–994. [Google Scholar] [CrossRef]
- Marchenko, E.S.; Baigonakova, G.A.; Kokorev, O.V.; Klopotov, A.A.; Iuzhakov, M.M. Phase equilibrium, structure, mechanical and biocompatible properties of TiNi-based alloy with silver. Mater. Res. Express. 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Hornbogen, E. Microstructure and Thermo-Mechanical Properties of NiTi Shape Memory Alloys. Mater. Sci. Forum. 2004, 455, 335–341. [Google Scholar] [CrossRef]
- Shen, J.-J.; Lu, N.-H.; Chen, C.-H. Mechanical and elastocaloric effect of aged Ni-rich TiNi shape memory alloy under load-controlled deformation. Mater. Sci. Eng. A 2020, 788, 139554. [Google Scholar] [CrossRef]
- Pratten, J.; Nazhat, S.N.; Blaker, J.J.; Boccaccini, A.R. In vitro attachment of Staphylococcus epidermidis to surgical sutures with and without Ag-containing bioactive glass coating. J. Biomater. Appl. 2004, 19, 47–57. [Google Scholar] [CrossRef]
- Chambers, C.; Proctor, C.; Kabler, P. Bactericidal effects of low concentrations of silver. J. Am. Waterworks Assoc. 1962, 54, 206–216. [Google Scholar] [CrossRef]
- Martinez-Gutierrez, F.; Olive, P.L.; Banuelos, A.; Orrantia, E.; Nino, N.; Sanchez, E.M.; Ruiz, F.; Bach, H.; Av-Gay, Y. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 681–688. [Google Scholar] [CrossRef]
- Chen, M.; Yang, L.; Zhang, L.; Han, Y.; Lu, Z.; Qin, G.; Zhang, E. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys. Mater. Sci. Eng. C 2017, 75, 906–917. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, B.; Wang, B.; Wang, Y.; Li, L.; Yang, Q.; Cui, L. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomater 2011, 7, 2758–2767. [Google Scholar] [CrossRef]
- Oh, K.-T.; Joo, U.-H.; Park, G.-H.; Hwang, C.-J.; Kim, K.-N. Effect of silver addition on the properties of nickel-titanium alloys for dental application. J. Biomed. Mater. Res. Part B Appl. Biomater 2006, 76, 306–314. [Google Scholar] [CrossRef]
- Li, S.; Kim, Y.-W.; Nam, T.-H. Transformation behavior and superelastic properties of Ti-Ni-Ag scaffolds prepared by sintering of alloy fibers. Scr. Mater 2018, 153, 23–26. [Google Scholar] [CrossRef]
- Momeni, S.; Tillmann, W. Influence of Ag on antibacterial performance, microstructure and phase transformation of NiTi shape memory alloy coatings. Vacuum 2019, 164, 242–245. [Google Scholar] [CrossRef]
- Jhou, W.-T.; Wang, C.; Ii, S.; Chiang, H.-S.; Hsueh, C.-H. TiNiCuAg shape memory alloy films for biomedical applications. J. Allo. Compd. 2018, 738, 336–344. [Google Scholar] [CrossRef]
- Da Silva, G.; Álvares, O.J. Designing NiTiAg shape memory alloys by vacuum arc remelting: First practical insights on melting and casting. Shape Mem. Superelast. 2018, 4, 402–410. [Google Scholar] [CrossRef]
- Marchenko, E.S.; Baigonakova, G.; Gyunter, V.E. The effect of silver doping on the structure and shape memory effect in biocompatible tini alloys. Tech. Phys. Lett. 2018, 44, 749–752. [Google Scholar] [CrossRef]
- Chun, S.-J.; Noh, J.-P.; Yeom, J.-T.; Kim, J.-I.; Nam, T.-H. Martensitic transformation behavior of Ti–Ni–Ag alloys. Intermetallics 2014, 46, 91–96. [Google Scholar] [CrossRef]
- Li, S.; Kim, E.-S.; Kim, Y.-W.; Nam, T.-H. Microstructures and martensitic transformation behavior of superelastic Ti-Ni-Ag scaffolds. Mater. Res. Bull. 2016, 82, 39–44. [Google Scholar] [CrossRef]
- Jang, J.-Y.; Chun, S.-J.; Kim, N.-S.; Cho, J.-W.; Kim, J.-H.; Yeom, J.-T.; Nam, T.-H.; Kim, J.-I. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys. Mater. Res. Bull. 2013, 48, 5064–5069. [Google Scholar] [CrossRef]
- Yi, X.; Pang, G.; Sun, B.; Meng, X.; Cai, W. The microstructure and martensitic transformation behaviors in Ti-Ni-Hf -X (Ag, Sn) high temperature shape memory alloys. J. Alloy. Compd. 2018, 756, 19–25. [Google Scholar] [CrossRef]
- Ibrahim, M.K.; Hamzah, E.; Saud, S.N.; Nazim, E.M.; Bahador, A. Silver additions influence on biomedical porous Ti-Ni SMAs fabricated by microwave sintering. J. Teknol. 2018, 80, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Baren, M.R. The Ag−Ca (Silver-Calcium) system. Bull. Alloy. Phase Diagrams. 1988, 9, 228–231. [Google Scholar] [CrossRef]
- Zamponi, C.; Wuttig, M.; Quandt, E. Ni–Ti–Ag shape memory thin films. Scr. Mater 2007, 56, 1075–1077. [Google Scholar] [CrossRef]
- Lyakishev, N.P. Diagrams of the State of Binary Metal Systems: Handbook; Volume 3; ASM International: Almere, the Netherlands, 1996. [Google Scholar]
- Murray, J.L.; Bhansali, K.J. The Ag−Ti (silver-titanium) system. Bull. Alloy. Phase Diagr. 1983, 4, 178–183. [Google Scholar] [CrossRef]
- Singleton, M.; Nash, P. The Ag−Ni (silver-nickel) system. JPE 1987, 8, 119–121. [Google Scholar] [CrossRef]
Sample | Detected Phases | Volume Fraction, vol.% | Lattice Parameters Å, and Unit Cell Volume, Å3 | CSR Dimensions, nm | Microdistortions, Δd/d, 10−3 |
---|---|---|---|---|---|
TiNi | Ti2Ni + Ti4Ni2O | 46 | a = 11.3414 V = 1458.8143 | 28 | 2.4 |
B19’ | 16 | - | 22 | 2.0 | |
B2 | 38 | a = 2.9969 V = 26.9164 | 38 | 1.5 | |
TiNi + 0.2% Ag | Ti2Ni + Ti4Ni2O | 51 | a = 11.1026 V = 1368.5923 | 26 | 2.1 |
B19’ | 18 | - | 22 | 1.1 | |
B2 | 31 | a = 3.0058 V = 27.1569 | 34 | 2.1 | |
TiNi + 0.5% Ag | Ti2Ni + Ti4Ni2O | 64 | a = 11.3065 V = 1445.3884 | 35 | 3.5 |
B19’ | 22 | - | 18 | 1.2 | |
B2 | 14 | a = 3.0039 V = 27.1054 | 20 | 4.3 |
Identification | Ti, at.% | Ni, at.% | O, at.% |
---|---|---|---|
TiNi (inert) | 40.57 | 59.43 | 0 |
TiNi matrix | 49.36 | 50.64 | 0 |
Ti2Ni | 56.2 | 36.87 | 6.93 |
Identification | Ti, at.% | Ni, at.% | O, at.% | Ag, at.% | Ca, at.% |
---|---|---|---|---|---|
TiNi matrix | 51.18 | 48.82 | - | - | - |
Ti2Ni | 59.55 | 29.84 | 10.09 | 0.52 | - |
Ag | 0.41 | 0.29 | 4.23 | 89.06 | 6.01 |
Identification | Ti, at.% | Ni, at.% | O, at.% | Ag, at.% | Ca, at.% |
---|---|---|---|---|---|
TiNi matrix | 28.75 | 71.19 | - | 0.05 | - |
Ti2Ni | 51.2 | 48.73 | - | 0.1 | - |
Ag | 0.41 | 0.29 | 4.23 | 89.06 | 6.01 |
AgxCay | - | - | - | x | y |
Ag (Ag9Ca2, Ag7Ca2) | - | - | - | 96.03 | 3.97 |
Sample | Min, µm | Max, µm | Average, µm |
---|---|---|---|
TiNi + 0.2% Ag | 0.19 | 1.619 | 0.81 |
TiNi + 0.5% Ag | 0.542 | 5.962 | 1.79 |
Alloys | E, MPa | σy, MPa | σb, MPa | εb, % | P, % |
---|---|---|---|---|---|
TiNi | 1733 | 26 | 71.5 | 6.8 | 62 |
TiNi + 0.2% Ag | 1000 | 15 | 70 | 16 | 63 |
TiNi + 0.5% Ag | 958.3 | 11.5 | 74 | 27 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchenko, E.; Baigonakova, G.; Larikov, V.; Monogenov, A.; Yasenchuk, Y. Structure and Mechanical Properties of Porous TiNi Alloys with Ag Nanoparticles. Coatings 2023, 13, 24. https://doi.org/10.3390/coatings13010024
Marchenko E, Baigonakova G, Larikov V, Monogenov A, Yasenchuk Y. Structure and Mechanical Properties of Porous TiNi Alloys with Ag Nanoparticles. Coatings. 2023; 13(1):24. https://doi.org/10.3390/coatings13010024
Chicago/Turabian StyleMarchenko, Ekaterina, Gulsharat Baigonakova, Viktor Larikov, Aleksandr Monogenov, and Yuri Yasenchuk. 2023. "Structure and Mechanical Properties of Porous TiNi Alloys with Ag Nanoparticles" Coatings 13, no. 1: 24. https://doi.org/10.3390/coatings13010024
APA StyleMarchenko, E., Baigonakova, G., Larikov, V., Monogenov, A., & Yasenchuk, Y. (2023). Structure and Mechanical Properties of Porous TiNi Alloys with Ag Nanoparticles. Coatings, 13(1), 24. https://doi.org/10.3390/coatings13010024