Cytotoxicity of Silver-Containing Coatings Used in Dentistry, a Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Information Sources
4. Search Strategy
5. Results
5.1. RoB Analysis
5.1.1. Studies Using Titanium
5.1.2. Studies Using Stainless Steel
5.1.3. Studies Using BisGMA/TEGDMA Thermosets
- | - | Huang et al., 2010 [6] | Chang et al., 2011 [7] | Ryu et al., 2012 [16] | Chang et al., 2013 [17] | Huang et al., 2013 [8] | Sancilio et al., 2014 [9] | Morita et al., 2014 [18] | Cochis et al., 2014 [10] | Kaczmarek et al., 2016 [15] | Cataldi et al., 2016 [11] | Kheur et al., 2017 [12] | Fatani et al., 2017 [13] | Odatsu et al., 2020 [14] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Introduction | Was the purpose of the study defined? | |||||||||||||
Methods | Was the number/concentration of HGFs used for the study described? | |||||||||||||
- | Was a control/reference group included in the study? | |||||||||||||
- | Did the authors describe the origin of HGFs? | |||||||||||||
- | Did the authors describe exactly how tested coatings were created? | |||||||||||||
- | Was cytotoxicity reliably assessed (e.g., using an SEM or spectrophotometer)? | |||||||||||||
- | Did the authors examine the surface of the samples after they had been covered with the silver-containing coating? | |||||||||||||
- | Were the silver-coated test samples purified for cytotoxicity testing? | |||||||||||||
- | Was it a sterilization process? | - | - | - | - | |||||||||
- | Were the conditions under which the study was conducted accurately described? | |||||||||||||
- | Was the exact time of exposure of HGFs to silver ion-containing coating described? | |||||||||||||
Results | Were the results checked more than once? | |||||||||||||
- | No external funding? | |||||||||||||
- | Were the findings presented in a clear and transparent manner? |
5.2. The GRADE Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deo, P.N.; Deshmukh, R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. 2019, 23, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Bharkhavy, K.V.; Pushpalatha, C.; Anandakrishna, L. Silver, the magic bullet in dentistry—A review. Mater. Today Proc. 2022, 50, 181–186. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.; Tam, D.N.H.; Elshafay, A.; Dang, T.; Hirayama, K.; Huy, N.T. Quality assessment tools used in systematic reviews of in vitro studies: A systematic review. BMC Med. Res. Methodol. 2021, 21, 101. [Google Scholar] [CrossRef] [PubMed]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; van der Heide, E. In silico contact pressure of metal-on-metal total hip implant with different materials subjected to gait loading. Metals 2022, 128, 1241. [Google Scholar] [CrossRef]
- Huang, H.; Chang, Y.; Lai, M.; Lin, C.; Lai, C.; Shieh, T. Antibacterial TaN-Ag coatings on titanium dental implants. Surf. Coat. Technol. 2010, 205, 1636–1641. [Google Scholar] [CrossRef]
- Chang, Y.; Lai, C.; Hsu, J.; Tang, C.; Liao, W.; Huang, H. Antibacterial properties and human gingival fibroblast cell compatibility of TiO2/Ag compound coatings and ZnO films on titanium-based material. Clin. Oral Investig. 2012, 16, 95–100. [Google Scholar] [CrossRef]
- Huang, H.; Chang, Y.; Chen, Y.; Lai, C.; Chen, M.Y.C. Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium. Thin Solid Film 2013, 549, 108–116. [Google Scholar] [CrossRef]
- Sancilio, S.; Giacomo, V.; Giulio, M.; Mallorini, M.; Marsich, E.; Travan, A.; Tarusha, L.; Cellini, L.; Cataldi, A. Biological responses of human gingival fibroblasts (HGFs) in an innovative Co-culture model with streptococcus mitis to thermosets coated with a silver polysaccharide antimicrobial system. PLoS ONE 2014, 9, e96520. [Google Scholar]
- Cochis, A.; Azzimonti, B.; Della Valle, C.; Chiesa, R.; Arciola, C.R.; Rimondini, L. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions. J. Biomed. Mater. Res. Part A 2015, 103A, 1176–1187. [Google Scholar] [CrossRef]
- Cataldi, A.; Gallorini, M.; Di Giulio, M.; Guarnieri, S.; Mariggio, M.A.; Traini, T.; Di Pietro, R.; Cellini, L.; Marsich, E.; Sancilio, S. Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg. Mater. Sci. Mater Med. 2016, 27, 88. [Google Scholar] [CrossRef] [PubMed]
- Kheur, S.; Singh, N.; Bodas, D.; Rauch, J.Y.; Jambhekar, S.; Kheur, M.; Rajwade, J. Nanoscale silver depositions inhibit microbial colonization and improve biocompatibility of titanium abutments. Colloids Surf. B Biointerfaces 2017, 159, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Fatani, E.J.; Almutairi, H.H.; Alharbi, A.O.; Alnakhli, Y.O.; Divakar, D.D.; Muzaheed; Alkheraif, A.A.; Khan, A.A. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Microb. Pathog. 2017, 112, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Odatsu, T.; Kuroshima, S.; Sato, M.; Takase, K.; Valanezhad, A.; Naito, M.; Sawase, T. Antibacterial Properties of Nano-Ag Coating on Healing Abutment: An In Vitro and Clinical Study. Antibiotics 2020, 9, 347. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Jurczyk, K.; Koper, J.K.; Paszel-Jaworska, A.; Romaniuk, A.; Lipińska, N.; Zurawski, J.; Urbaniak, P.; Jakubowicz, J.; Jurczyk, M.U. In vitro biocompatibility of anodized titanium with deposited silver nanodendrites. J. Mater. Sci. 2016, 51, 5259–5270. [Google Scholar] [CrossRef]
- Ryu, H.; Baeb, I.; Leec, K.; Hwangd, H.; Leee, K.; Kohf, J.; Cho, J. Antibacterial effect of silver-platinum coating for orthodontic appliances. Angle Orthod. 2012, 82, 151–157. [Google Scholar] [CrossRef]
- Chang, Y.; Huang, H.; Chen, Y.; Weng, J.; Lai, C. Characterization and antibacterial performance of ZrNO-Ag coatings. Surf. Coat. Technol. 2013, 231, 224–228. [Google Scholar] [CrossRef]
- Morita, Y.; Imai, S.; Hanyuda, A.; Matin, K.; Handa, N.; Nakamura, Y. Effect of silver ion coating of fixed orthodontic retainers on the growth of oral pathogenic bacteria. Dent. Mater. J. 2014, 33, 268–274. [Google Scholar] [CrossRef][Green Version]
- Grade, S.; Eberhard, J.; Jakobi, J.; Winkel, A.; Stiesch, M.; Barcikowski, S. Alloying colloidal silver nanoparticles with gold disproportionally controls antibacterial and toxic effects. Gold Bull 2014, 47, 83–93. [Google Scholar] [CrossRef]
- Travan, A.; Marsicha, E.; Donati, I.; Benincasa, M.; Giazzon, M.; Felisari, L.; Paoletti, S. Silver-polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets. Acta Biomater. 2011, 7, 337–346. [Google Scholar] [CrossRef]
- Pilcher, J.D.; Sollmann, T. Organic, protein and colloidal silver compounds, their antiseptic efficiency and silver ion content as a basis for their classification. J. Lab. Clin. Med. 1924, 8, 301–310. [Google Scholar]
- Zhang, X.; Wu, H.; Geng, Z.; Huang, X.; Hang, R.; Ma, Y.; Yao, X.; Tang, B. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater. Sci. Eng. C 2014, 45, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.-T.; Shim, H.-M.; Kim, K.-N. Properties of titanium-silver alloys for dental application. J. Biomed. Mater. Res. 2005, 74B, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.F.; Huang, M.S.; Chiou, S.Y.; Ou, K.L. Research of antibacterial activity on silver containing yttria-stabilized-zirconia bioceramic. Ceram. Int. 2013, 39, 3591–3596. [Google Scholar] [CrossRef]
- Yamada, R.; Nozaki, K.; Horiuchi, N.; Yamashita, K.; Nemoto, R.; Miura, H.; Nagai, A. Ag nanoparticle-coated zirconia for antibacterial prosthesis. Mater. Sci. Eng. C 2017, 78, 1054–1060. [Google Scholar] [CrossRef]
- Pajor, K.; Pajchel, Ł.; Zgadzaj, A.; Piotrowska, U.; Kolmas, J. Modifications of hydroxyapatite by gallium and silver ions-physicochemical characterization, cytotoxicity and antibacterial evaluation. Int. J. Mol. Sci. 2020, 21, 5006. [Google Scholar] [CrossRef]
- Gallorini, M.; di Giacomo, V.; Di Valerio, V.; Rapino, M.; Bosco, D.; Travan, A.; Di Giulio, M.; Di Pietro, R.; Paoletti, S.; Cataldi, A.; et al. Cell-protection mechanism through autophagy in HGFs/S. mitis co-culture treated with Chitlac-nAg. J. Mater. Sci. Mater Med. 2016, 27, 186. [Google Scholar] [CrossRef]
- Rokaya, D.; Srimaneepong, V.; Qin, J.; Thunyakitpisal, P.; Siraleartmukul, K. Surface adhesion properties and cytotoxicity of graphene oxide coatings and graphene oxide/silver nanocomposite coatings on biomedical NiTi alloy. Sci. Adv. Mater. 2019, 11, 1474–1487. [Google Scholar] [CrossRef]
- Srimaneepong, V.; Rokaya, D.; Thunyakitpisal, P.; Qin, J.; Saengkiettiyut, K. Corrosion resistance of graphene oxide/silver coatings on Ni-Ti alloy and expression of IL-6 and IL-8 in human oral fibroblasts. Sci. Rep. 2020, 10, 3247. [Google Scholar] [CrossRef]
Admission Type | Study Design | RoB | Inconsistency | Indirectness | Imprecision | Comments | Certainty |
---|---|---|---|---|---|---|---|
Certainty assessment | |||||||
Title of publication, authors | - | - | - | - | - | - | - |
In in vitro studies | |||||||
“Antibacterial TaN-Ag coatings on titanium dental implants” by Huang et al., 2010 [6] | In vitro experimental study | Low | Not serious | Not serious | Not serious | p < 0.05 | ꚚꚚꚚꚚ High |
“Antibacterial properties and human gingival fibroblast cell compatibility of TiO2/Ag compound coatings and ZnO films on titanium-based material” by Chang et al., 2011 [7] | In vitro experimental study | Low | Not serious | Not serious | Not serious | p < 0.05 | ꚚꚚꚚꚚ High |
“Antibacterial effect of silver-platinum coating for orthodontic appliances” by Ryu et al., 2012 [16] | In vitro experimental study | Moderate | Moderate | Not serious | Moderate | Concentration/number of HGFs not specified, no information regarding the p-value | ꚚꚚꚚO Moderate |
“Characterization and antibacterial performance of ZrNO-Ag coatings” by Chang et al., 2013 [17] | In vitro experimental study | Low | Moderate | Not serious | Not serious | No information regarding the p-value | ꚚꚚꚚꚚ High |
“Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium” by Huang et al., 2013 [8] | In vitro experimental study | Low | Not serious | Not serious | Not serious | p < 0.05 | ꚚꚚꚚꚚ High |
“Biological Responses of Human Gingival Fibroblasts (HGFs) in an Innovative Co-Culture Model with Streptococcus mitis to Thermosets Coated with a Silver Polysaccharide Antimicrobial System” by Sancillo et al., 2014 [9] | In vitro experimental study | Low | Not serious | Not serious | Not serious | p < 0.05 | ꚚꚚꚚꚚ High |
“Effect of silver ion coating of fixed orthodontic retainers on the growth of oral pathogenic bacteria” by Morita et al., 2014 [18] | In vitro experimental study | Low | Moderate | Not serious | Not serious | No information regarding the p-value for cytotoxicity studies | ꚚꚚꚚꚚ High |
“Biofilm formation on titanium implants counteracted by grafting gallium and silver ions” by Cochis et al., 2014 [10] | In vitro experimental study | Low | Not serious | Not serious | Not serious | The significance level was set at 5% | ꚚꚚꚚꚚ High |
“In vitro biocompatibility of anodized titanium with deposited silver nanodendrites” by Kaczmarek et al., 2016 [15] | In vitro experimental study | Very low | Moderate | Not serious | Not serious | No information regarding the p-value | ꚚꚚꚚꚚ High |
“Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg” by Cataldi et al., 2016 [11] | In vitro experimental study | Very low | Not serious | Not serious | Not serious | p < 0.05 | ꚚꚚꚚꚚ High |
“Nanoscale silver depositions inhibit microbial colonization and improve biocompatibility of titanium abutments” by Kheur et al., 2017 [12] | In vitro experimental study | Very low | Not serious | Not serious | Not serious | p < 0.05 | ꚚꚚꚚꚚ High |
“In vitro assessment of stainless-steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis” by Fatani et al., 2017 [13] | In vitro experimental study | Moderate | Not serious | Not serious | Not serious | p < 0.05 | ꚚꚚꚚO Moderate |
“Antibacterial Properties of Nano-Ag Coating on Healing Abutment: An In Vitro and Clinical Study” by Odatsu et al., 2020 [14] | In vitro experimental study | Very low | Not serious | Not serious | Not serious | p < 0.05 | ꚚꚚꚚꚚ High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawlik-Maj, M.; Babczyńska, A.; Gerber, H.; Kotuła, J.; Sobieszczańska, B.; Sarul, M. Cytotoxicity of Silver-Containing Coatings Used in Dentistry, a Systematic Review. Coatings 2022, 12, 1338. https://doi.org/10.3390/coatings12091338
Gawlik-Maj M, Babczyńska A, Gerber H, Kotuła J, Sobieszczańska B, Sarul M. Cytotoxicity of Silver-Containing Coatings Used in Dentistry, a Systematic Review. Coatings. 2022; 12(9):1338. https://doi.org/10.3390/coatings12091338
Chicago/Turabian StyleGawlik-Maj, Marta, Alicja Babczyńska, Hanna Gerber, Jacek Kotuła, Beata Sobieszczańska, and Michał Sarul. 2022. "Cytotoxicity of Silver-Containing Coatings Used in Dentistry, a Systematic Review" Coatings 12, no. 9: 1338. https://doi.org/10.3390/coatings12091338
APA StyleGawlik-Maj, M., Babczyńska, A., Gerber, H., Kotuła, J., Sobieszczańska, B., & Sarul, M. (2022). Cytotoxicity of Silver-Containing Coatings Used in Dentistry, a Systematic Review. Coatings, 12(9), 1338. https://doi.org/10.3390/coatings12091338