Simulation of Light-Trapping Characteristics of Self-Assembled Nano-Ridges in Ternary Organic Film
Abstract
:1. Introduction
2. Numerical Model
2.1. Numerical Conditions and Parameters
2.2. Numerical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, C.C.; Wang, J.X.; Zhao, X.Y.; Du, Z.L.; Yang, R.Q.; Tang, J.G. Recent advances, challenges and prospects in ternary organic solar cells. Nanoscale 2021, 13, 2181–2208. [Google Scholar] [CrossRef] [PubMed]
- Doumon, N.Y.; Yang, L.L.; Rosei, F. Ternary organic solar cells: A review of the role of the third element. Nano Energy 2022, 94, 106915. [Google Scholar] [CrossRef]
- Chang, L.C.; Sheng, M.; Duan, L.P.; Uddin, A. Ternary organic solar cells based on non-fullerene acceptors: A review. Org. Electron. 2021, 90, 106063. [Google Scholar] [CrossRef]
- Ni, Y.F.; Liu, X.; Liu, Y.; Feng, Z.D.; Tu, D.D.; Guo, X.; Li, C. Nonalloy model-based ternary organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 12461–12468. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.Q.; Li, C.; Yan, J.; Zhou, G.Q.; Zhong, W.K.; Hao, T.Y.; Song, J.L.; Xue, X.N.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Y.; Yang, X.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J.W.; Wang, T.; Guo, J.; Liu, C.; et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 2022, 34, 2110147. [Google Scholar] [CrossRef]
- Sun, X.X.; Ni, J.; Li, C.; Huang, L.K.; Xu, R.; Li, Z.L.; Cai, H.K.; Li, J.; Zhang, J.J. Air-processed high performance ternary blend solar cell based on PTB7-Th: PCDTBT: PC70BM. Org. Electron. 2016, 37, 222–227. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Wang, N. Small energy loss in ternary organic solar cells with a blend of cascade energy levels: Two fullerene-free acceptors as the electron acceptor. J. Mater. Chem. C 2019, 7, 10039–10048. [Google Scholar] [CrossRef]
- Zeng, Y.H.; Li, D.Q.; Xiao, Z.; Wu, H.B.; Chen, Z.; Hao, T.Y.; Xiong, S.B.; Ma, Z.F.; Zhu, H.M.; Ding, L.M.; et al. Exploring the charge dynamics and energy loss in ternary organic solar cells with a fill factor exceeding 80%. Adv. Energy Mater. 2021, 11, 2101338. [Google Scholar] [CrossRef]
- Adil, M.A.; Iqbal, M.J.; Zhang, J.; Wei, Z. Unconventional third components for ternary organic solar cells. Mater. Today Energy 2021, 21, 100728. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, J.Q.; Bi, P.Q.; Ren, J.Z.; Wang, Y.F.; Yang, Y.; Liu, X.Y.; Zhang, S.Q.; Hou, J.H. Tandem organic solar cell with 20.2% efficiency. Joule 2022, 6, 171–184. [Google Scholar] [CrossRef]
- Wang, H.T.; Zhang, Z.H.; Yu, J.S.; Liu, X.; Tang, W.H. High mobility acceptor as third component enabling high-performance large area and thick active layer ternary solar cells. Chem. Eng. J. 2021, 418, 129539. [Google Scholar] [CrossRef]
- Pan, F.L.; Luo, M.; Liu, X.C.; Jiang, H.Y.; Wang, Z.; Yuan, D.; Wang, Q.; Qing, L.C.; Zhang, Z.S.; Zhang, L.J.; et al. Binary non-fullerene-based polymer solar cells with a 430 nm thick active layer showing 15.39% efficiency and 73.38% fill factor. J. Mater. Chem. A 2021, 9, 7129–7136. [Google Scholar] [CrossRef]
- Guo, X.; Fan, Q.P.; Wu, J.N.; Li, G.W.; Peng, Z.X.; Su, W.Y.; Lin, J.; Hou, L.T.; Qin, Y.P.; Ade, H.; et al. Optimized active layer morphologies via ternary copolymerization of polymer donors for 17.6% efficiency organic solar cells with enhanced fill factor. Angew. Chem. 2021, 133, 2352–2359. [Google Scholar] [CrossRef]
- Yang, W.Y.; Wang, W.; Wang, Y.H.; Sun, R.; Guo, J.; Li, H.N.; Shi, M.M.; Guo, J.; Wu, Y.; Wang, T.; et al. Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule 2021, 5, 1209–1230. [Google Scholar] [CrossRef]
- Kumar, N.S.; Naidu, K.C.B. A review on perovskite solar cells (PSCs), materials and applications. J. Mater. 2021, 7, 940–956. [Google Scholar]
- Sobayel, M.K.; Chowdhury, M.S.; Hossain, T.; Alkhammash, H.I.; Islam, S.; Shahiduzzaman, M.; Akhtaruzzaman, M.; Techato, K.; Rashid, M.J. Efficiency enhancement of CIGS solar cell by cubic silicon carbide as prospective buffer layer. Sol. Energy 2021, 224, 271–278. [Google Scholar] [CrossRef]
- Shuai, Z.G.; Wang, L.J.; Li, Q.K. Evaluation of charge mobility in organic materials: From localized to delocalized descriptions at a first-principles level. Adv. Mater. 2011, 23, 1145–1153. [Google Scholar] [CrossRef]
- Lin, Y.B.; Nugraha, M.I.; Firdaus, Y.; Scaccabarozzi, A.D.; Aniés, F.; Emwas, A.H.; Yengel, E.; Zheng, X.P.; Liu, J.K.; Wahyudi, W.; et al. A simple n-dopant derived from diquat boosts the efficiency of organic solar cells to 18.3%. ACS Energy Lett. 2020, 5, 3663–3671. [Google Scholar] [CrossRef]
- Zhao, C.C.; Wang, J.X.; Jiao, J.Q.; Huang, L.J.; Tang, J. Recent advances of polymer acceptors for high-performance organic solar cells. J. Mater. Chem. C 2020, 8, 28–43. [Google Scholar] [CrossRef]
- Tong, Y.; Xiao, Z.; Du, X.Y.; Zuo, C.T.; Li, Y.L.; Lv, M.L.; Yuan, Y.B.; Yi, C.Y.; Hao, F.; Hua, Y.; et al. Progress of the key materials for organic solar cells. Sci. China Chem. 2020, 63, 758–765. [Google Scholar] [CrossRef]
- Wang, L.J.; Nan, G.J.; Yang, X.D.; Peng, Q.; Li, Q.K.; Shuai, Z.G. Computational methods for design of organic materials with high charge mobility. Chem. Soc. Rev. 2010, 39, 423–434. [Google Scholar] [CrossRef]
- Wang, Y.F.; Liang, Z.Z.; Li, X.M.; Qin, J.C.; Ren, M.L.; Yang, C.Y.; Bao, X.C.; Xia, Y.J.; Li, J.F. Self-doping n-type polymer as a cathode interface layer enables efficient organic solar cells by increasing built-in electric field and boosting interface contact. J. Mater. Chem. C 2019, 7, 11152–11159. [Google Scholar] [CrossRef]
- Gao, W.; An, Q.S.; Hao, M.H.; Sun, R.; Yuan, J.; Zhang, F.J.; Ma, W.; Min, J.; Yang, C.L. Thick-film organic solar cells achieving over 11% efficiency and nearly 70% fill factor at thickness over 400 nm. Adv. Funct. Mater. 2020, 30, 1908336. [Google Scholar] [CrossRef]
- Kang, D.J.; Kang, H.; Cho, C.; Kim, K.H.; Jeong, S.; Lee, J.Y.; Kim, B.J. Efficient light trapping in inverted polymer solar cells by a randomly nanostructured electrode using monodispersed polymer nanoparticles. Nanoscale 2013, 5, 1858–1863. [Google Scholar] [CrossRef]
- Chen, J.Y.; Yu, M.H.; Chang, C.Y.; Chao, Y.H.; Sun, K.W.; Hsu, C.S. Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures. ACS Appl. Mater. Interfaces 2014, 6, 6164–6169. [Google Scholar] [CrossRef]
- Na, S.I.; Kim, S.S.; Jo, J.; Oh, S.H.; Kim, J.; Kim, D.Y. Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography. Adv. Funct. Mater. 2008, 18, 3956–3963. [Google Scholar] [CrossRef]
- Qiao, L.F.; Wang, D.; Zuo, L.J.; Ye, Y.Q.; Qian, J.; Chen, H.Z.; He, S.L. Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Appl. Energy 2011, 88, 848–852. [Google Scholar] [CrossRef]
- Wu, J.L.; Chen, F.C.; Hsiao, Y.S.; Chien, F.C.; Chen, P.; Kuo, C.H.; Huang, M.H.; Hsu, C.S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2011, 5, 959–967. [Google Scholar] [CrossRef]
- Pastorelli, F.; Romero-Gomez, P.; Betancur, R.; Martinez-Otero, A.; Mantilla-Perez, P.; Bonod, N.; Martorell, J. Enhanced light harvesting in semitransparent organic solar cells using an optical metal cavity configuration. Adv. Energy Mater. 2015, 5, 1400614. [Google Scholar] [CrossRef]
- Yang, Y.; Mielczarek, K.; Aryal, M.; Zakhidov, A.; Hu, W. Nanoimprinted polymer solar cell. ACS Nano 2012, 6, 2877–2892. [Google Scholar] [CrossRef]
- Li, C.; Tao, J.Y.; Zou, Z.J.; Liao, G.H.; Li, F.; Wang, J.F.; Sun, X.X.; Ni, J.; Zhang, J.J. Broad spectrum light-trapping ternary polymer solar cells based on self-assembled nano-ridged active layer. Sol. Energy 2020, 198, 1–7. [Google Scholar] [CrossRef]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.D.; Johnson, S.G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
- Vedraine, S.; Torchio, P.; Duché, D.; Flory, F.; Simon, J.J.; Le Rouzo, J.; Escoubas, L. Intrinsic absorption of plasmonic structures for organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, S57–S64. [Google Scholar] [CrossRef]
- Duche, D.; Torchio, P.; Escoubas, L.; Monestier, F.; Simon, J.J.; Flory, F.; Mathian, G. Improving light absorption in organic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells 2009, 93, 1377–1382. [Google Scholar] [CrossRef]
- Aguilar, O.; de Castro, S.; Godoy, M.P.F.; Dias, M.R.S. Optoelectronic characterization of Zn1-xCdxO thin films as an alternative to photonic crystals in organic solar cells. Opt. Mater. Express 2019, 9, 3638–3648. [Google Scholar] [CrossRef]
- Shin, S.C.; Vincent, P.; Bae, J.H.; Lee, J.J.; Nam, M.; Ko, D.H.; Kim, H.; Shim, J.W. Quaternary indoor organic photovoltaic device demonstrating panchromatic absorption and power conversion efficiency of 10%. Dye. Pigment. 2019, 163, 48–54. [Google Scholar] [CrossRef]
- Chen, P.Z.; Hou, G.F.; Fan, Q.H.; Ni, J.; Zhang, J.J.; Huang, Q.; Zhang, X.D.; Zhao, Y. Combining randomly textured surfaces and one-dimensional photonic crystals as efficient light-trapping structures in hydrogenated amorphous silicon solar cells. Sol. Energy Mater. Sol. Cells 2015, 143, 435–441. [Google Scholar] [CrossRef]
- Chen, J.D.; Cui, C.H.; Li, Y.Q.; Zhou, L.; Ou, Q.D.; Li, C.; Li, Y.F.; Tang, J.X. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 2015, 27, 1035–1041. [Google Scholar] [CrossRef]
- Palanchoke, U.; Jovanov, V.; Kurz, H.; Dewan, R.; Magnus, P.; Stiebig, H.; Knipp, D. Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells. Appl. Phys. Lett. 2013, 102, 083501. [Google Scholar] [CrossRef]
Height (nm) | Width (nm) | Aspect Ratio (H/W) |
---|---|---|
22 | 780 | 0.0282 |
26 | 660 | 0.0394 |
31.8 | 540 | 0.0588 |
40.9 | 420 | 0.0973 |
57.2 | 300 | 0.1907 |
95.3 | 180 | 0.5296 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Chen, M.; Li, F.; Sun, X.; Yu, Z.; Tao, J.; Zou, Z.; Liao, G.; Zhang, J. Simulation of Light-Trapping Characteristics of Self-Assembled Nano-Ridges in Ternary Organic Film. Coatings 2022, 12, 1340. https://doi.org/10.3390/coatings12091340
Li C, Chen M, Li F, Sun X, Yu Z, Tao J, Zou Z, Liao G, Zhang J. Simulation of Light-Trapping Characteristics of Self-Assembled Nano-Ridges in Ternary Organic Film. Coatings. 2022; 12(9):1340. https://doi.org/10.3390/coatings12091340
Chicago/Turabian StyleLi, Chang, Mingxin Chen, Fen Li, Xiaoxiang Sun, Zhuoliang Yu, Jiayou Tao, Zhijun Zou, Gaohua Liao, and Jianjun Zhang. 2022. "Simulation of Light-Trapping Characteristics of Self-Assembled Nano-Ridges in Ternary Organic Film" Coatings 12, no. 9: 1340. https://doi.org/10.3390/coatings12091340
APA StyleLi, C., Chen, M., Li, F., Sun, X., Yu, Z., Tao, J., Zou, Z., Liao, G., & Zhang, J. (2022). Simulation of Light-Trapping Characteristics of Self-Assembled Nano-Ridges in Ternary Organic Film. Coatings, 12(9), 1340. https://doi.org/10.3390/coatings12091340