Point-of-Care Testing Blood Coagulation Detectors Using a Bio-Microfluidic Device Accompanied by Raman Spectroscopy
Conflicts of Interest
References
- Li, H.; Steckl, A.J. Paper microfluidics for point-of-care blood-based analysis and diagnostics. Anal. Chem. 2018, 91, 352–371. [Google Scholar] [CrossRef] [PubMed]
- Niciński, K.; Krajczewski, J.; Kudelski, A.; Witkowska, E.; Trzcińska-Danielewicz, J.; Girstun, A.; Kamińska, A. Detection of circulating tumor cells in blood by shell-isolated nanoparticle–enhanced Raman spectroscopy (SHINERS) in microfluidic device. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.D.; Zacharski, L.R.; Widirstky, S.T.; Rosenstein, R.; Zaitlin, L.M.; Burgess, D.R. Transformation and motility of human platelets: Details of the shape change and release reaction observed by optical and electron microscopy. J. Cell Biol. 1979, 83, 126–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.L.; Chiou, Y.C.; Chou, C.W.; Young, K.C.; Huang, S.J.; Liu, C.Y. Point-of-care testing of portable blood coagulation detectors using optical sensors. J. Med. Biol. Eng. 2013, 33, 319–324. [Google Scholar] [CrossRef]
- Yang, C.-L.; Huang, S.-J.; Chou, C.-W.; Chiou, Y.-C.; Lin, K.-P.; Tsai, M.-S.; Young, K.-C. Design and evaluation of a portable optical-based biosensor for testing whole blood prothrombin time. Talanta 2013, 116, 704–711. [Google Scholar] [CrossRef]
- Kong, K.; Kendall, C.; Stone, N.; Notingher, I. Raman spectroscopy for medical diagnostics—From in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 2015, 89, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Atkins, C.; Buckley, K.; Blades, M.W.; Turner, R.F. Raman spectroscopy of blood and blood components. Appl. Spectrosc. 2017, 71, 767–793. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci. Int. 2008, 181, e1–e5. [Google Scholar] [CrossRef]
- Mrozek, M.F.; Weaver, M.J. Detection and identification of aqueous saccharides by using surface-enhanced raman spectroscopy. Anal. Chem. 2002, 74, 4069–4075. [Google Scholar] [CrossRef]
- Zyubin, A.; Rafalskiy, V.; Tcibulnikova, A.; Moiseeva, E.; Matveeva, K.; Tsapkova, A.; Lyatun, I.; Medvedskaya, P.; Samusev, I.; Demin, M. Surface-enhanced Raman spectroscopy for antiplatelet therapy effectiveness assessment. Laser Phys. Lett. 2020, 17, 045601. [Google Scholar] [CrossRef]
- Surya, I.I.; Akkerman, J.-W.N. The influence of lipoproteins on blood platelets. Am. Hear. J. 1993, 125, 272–275. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Immanuel, P.; Chiu, Y.-H.; Huang, S.-J. Heterogeneous Bonding of PMMA and Double-Sided Polished Silicon Wafers through H2O Plasma Treatment for Microfluidic Devices. Coatings 2021, 11, 580. [Google Scholar] [CrossRef]
- Premasiri, W.R.; Lee, J.C.; Ziegler, L.D. Surface-enhanced raman scattering of whole human blood, blood plasma, and red blood cells: Cellular processes and bioanalytical sensing. J. Phys. Chem. B 2012, 116, 9376–9386. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.M.; Egawa, S.; Wirth, A.G.; Tshikudi, D.M.; Van Cott, E.M.; Nadkarni, S.K. Clinical evaluation of whole blood prothrombin time (PT) and international normalized ratio (INR) using a Laser Speckle Rheology sensor. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boehlen, F.; Reber, G.; de Moerloose, P. Agreement of a new whole-blood PT/INR test using capillary samples with plasma INR determinations. Thromb. Res. 2005, 115, 131–134. [Google Scholar] [CrossRef]
- Vermeer, C.; Govers-Riemslag, J.; Soute, B.; Lindhout, M.; Kop, J.; Hemker, C. The role of blood clotting factor V in the conversion of prothrombin and A decarboxy prothrombin into thrombin. Biochim. Et Biophys. Acta Gen. Subj. 1978, 538, 521–533. [Google Scholar] [CrossRef]
- Monroe, D.M.; Hoffman, M. The coagulation cascade in cirrhosis. Clin. Liver Dis. 2009, 13, 1–9. [Google Scholar] [CrossRef]
- Gautam, R.; Oh, J.Y.; Marques, M.B.; Dluhy, R.A.; Patel, R.P. Characterization of storage-induced red blood cell hemolysis using raman spectroscopy. Lab. Med. 2018, 49, 298–310. [Google Scholar] [CrossRef]
- Williams, D. The Effect of Red Blood Cell Velocity on Oxygenation Measurements using Resonance Raman Spectroscopy. Master’s Thesis, Virginia Commonwealth University, Richmond, VA, USA, 2005. [Google Scholar]
- Saito, T.; Kinugasa, S. Development and release of a spectral database for organic compounds-key to the continual services and success of a large-scale database. Synth. Engl. Ed. 2011, 4, 35–44. [Google Scholar]
- Boyd, S.; Bertino, M.F.; Seashols, S.J. Raman spectroscopy of blood samples for forensic applications. Forensic Sci. Int. 2011, 208, 124–128. [Google Scholar] [CrossRef]
- Zhu, M.F.; Ye, X.P.; Huang, Y.Y.; Guo, Z.Y.; Zhuang, Z.F.; Liu, S.H. Detection of methemoglobin in whole blood based on confocal micro-raman spectroscopy and multivariate statistical techniques. Scanning 2014, 36, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Breddin, H.K.; Hach-Wunderle, V.; Nakov, R.; Kakkar, V.V. Effects of a low-molecular-weight heparin on thrombus regression and recurrent thromboembolism in patients with deep-vein thrombosis. N. Engl. J. Med. 2001, 344, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Atha, D.H.; Gaigalas, A.K.; Reipa, V. Structural analysis of heparin by raman spectroscopy. J. Pharm. Sci. 1996, 85, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Chiba, H.; Tashiro, H.; Ozaki, Y. Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: Comparison of the spectra with 514.5-, 720-, and 1064-nm excitation. J. Biomed. Opt. 2001, 6, 366–370. [Google Scholar] [CrossRef]
- Cheng, I.-F.; Chang, H.-C.; Chen, T.-Y.; Hu, C.; Yang, F.-L. Rapid (<5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced raman spectroscopy. Sci. Rep. 2013, 3, srep02365. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-J.; Chiang, C.-C.; Immanuel, P.N.; Subramania, M. Point-of-Care Testing Blood Coagulation Detectors Using a Bio-Microfluidic Device Accompanied by Raman Spectroscopy. Coatings 2022, 12, 893. https://doi.org/10.3390/coatings12070893
Huang S-J, Chiang C-C, Immanuel PN, Subramania M. Point-of-Care Testing Blood Coagulation Detectors Using a Bio-Microfluidic Device Accompanied by Raman Spectroscopy. Coatings. 2022; 12(7):893. https://doi.org/10.3390/coatings12070893
Chicago/Turabian StyleHuang, Song-Jeng, Chao-Ching Chiang, Philip Nathaniel Immanuel, and Murugan Subramania. 2022. "Point-of-Care Testing Blood Coagulation Detectors Using a Bio-Microfluidic Device Accompanied by Raman Spectroscopy" Coatings 12, no. 7: 893. https://doi.org/10.3390/coatings12070893
APA StyleHuang, S.-J., Chiang, C.-C., Immanuel, P. N., & Subramania, M. (2022). Point-of-Care Testing Blood Coagulation Detectors Using a Bio-Microfluidic Device Accompanied by Raman Spectroscopy. Coatings, 12(7), 893. https://doi.org/10.3390/coatings12070893