Mid-Infrared HgTe Colloidal Quantum Dots In-Situ Passivated by Iodide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Device Preparation
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mynbaev, K.D.; Ivanov-Omskiĭ, V.I. Doping of epitaxial layers and heterostructures based on HgCdTe. Semiconductors 2006, 40, 1–21. [Google Scholar] [CrossRef]
- Schneider, H.; Liu, H.C. Quantum Well Infrared Photodetectors: Physics and Applications; Springer: Berlin, Germany, 2006. [Google Scholar]
- Levine, B.F. Quantum-well infrared photodetectors. J. Appl. Phys. 1993, 74, R1–R81. [Google Scholar] [CrossRef]
- Mailhiot, C.; Smith, D.L. Long-wavelength infrared detectors based on strained InAs–Ga1−xInxSb type-II superlattices. J. Vac. Sci. Technol. 1989, 7, 445–449. [Google Scholar] [CrossRef]
- Brown, G.J.; Szmulowicz, F.; Mahalingam, K.; Houston, S.; Wei, Y.; Gin, A.; Razeghi, M. Recent advances in InAs/GaSb superlattices for very long wavelength infrared detection. In Proceedings of the Quantum Sensing: Evolution and Revolution from Past to Future, San Jose, CA, USA, 27–30 January 2003; Volume 4999, pp. 457–466. [Google Scholar]
- Lhuillier, E.; Keuleyan, S.; Liu, H.; Guyot-Sionnest, P. Mid-IR colloidal nanocrystals. Chem. Mater. 2013, 25, 1272–1282. [Google Scholar] [CrossRef]
- Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 2009, 105, 4. [Google Scholar] [CrossRef] [Green Version]
- Sargent, E.H. Colloidal quantum dot solar cells. Nat. Photon. 2012, 6, 133–135. [Google Scholar] [CrossRef]
- Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J.C.; Hens, Z. Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004–2012. [Google Scholar] [CrossRef]
- Allan, G.; Delerue, C. Tight-binding calculations of the optical properties of HgTe nanocrystals. Phys. Rev. B 2012, 86, 165437. [Google Scholar] [CrossRef]
- Brown, P.R.; Kim, D.; Lunt, R.R.; Zhao, N.; Bawendi, M.G.; Grossman, J.C.; Bulovic, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872. [Google Scholar] [CrossRef]
- Green, M.; Mirzai, H. Synthetic routes to mercury chalcogenide quantum dots. J. Mater. Chem. C 2018, 6, 5097–5112. [Google Scholar] [CrossRef]
- Izquierdo, E.; Robin, A.; Keuleyan, S.; Lequeux, N.; Lhuillier, E.; Ithurria, S. Strongly confined HgTe 2D nanoplatelets as narrow near-infrared emitters. J. Am. Chem. Soc. 2016, 138, 10496–10501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, L.B.; Nathan, D.J. Growth mechanisms in nanocrystalline lead sulfide by stopped-flow kinetic analysis. J. Phys. Chem. C 2009, 113, 20246–20251. [Google Scholar]
- Rogach, A.L.; Harrison, M.T.; Kershaw, S.V.; Kornowski, A.; Burt, M.G.; Eychmüller, A.; Weller, H. Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence. Phys. Status Solidi B 2001, 224, 153–158. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Y.; Zheng, S.; Liu, X.; Qiu, X.; Tang, Z.; Kim, J.W. Self-reorganization of CdTe nanoparticles into near-infrared Hg1−xCdxTe nanowire networks. Chem. Mater. 2009, 21, 3177–3182. [Google Scholar] [CrossRef]
- Wang, S.B.; Hu, B.; Liu, C.C.; Yu, S.H. Syringe pump-assisted synthesis of water-soluble cubic structure Ag2Se nanocrystals by a cation-exchange reaction. J. Colloid Interface Sci. 2008, 325, 351–355. [Google Scholar] [CrossRef]
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Stephen, V.K.; Andrei, S.S.; Andrey, L.R. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033–3087. [Google Scholar]
- Hunhee, L.; Donghun, K.; Min-Jae, C.; Edward, H.S.; Yeon, S.J.; Jin, Y.K. Suppressing interfacial dipoles to minimize open-circuit voltage loss in quantum dot photovoltaics. Adv. Energy Mater. 2019, 9, 1901938. [Google Scholar]
- Li, L.S.; Wang, H.; Liu, Y.; Lou, S.; Wang, Y.; Du, Z. Room temperature synthesis of HgTe nanocrystals. J. Colloid Interf. Sci. 2007, 308, 254–257. [Google Scholar] [CrossRef]
- Ackerman, M.M.; Tang, X.; Guyot-Sionnest, P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 2018, 12, 7264–7271. [Google Scholar] [CrossRef]
- Guyot-Sionnest, P.; Roberts, J.A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots. Appl. Phys. Lett. 2015, 107, 253104. [Google Scholar] [CrossRef]
- Tang, X.; Lai, K.W.C. Graphene/HgTe quantum-dot photodetectors with gate-tunable infrared response. ACS Appl. Nano Mater. 2019, 2, 6701–6706. [Google Scholar] [CrossRef]
- Kovalenko, M.V.; Kaufmann, E.; Pachinger, D.; Roither, J.; Huber, M.; Stangl, J.; Hesser, G.; Schäffler, F.; Heiss, W. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: From telecommunications to molecular vibrations. J. Am. Chem. Soc. 2006, 128, 3516–3517. [Google Scholar] [CrossRef] [PubMed]
- Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 2011, 133, 16422–16424. [Google Scholar] [CrossRef]
- Keuleyan, S.E.; Guyot-Sionnest, P.; Delerue, C.; Allan, G. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 2014, 8, 8676–8682. [Google Scholar] [CrossRef]
- Green, M. The nature of quantum dot capping ligands. J. Mater. Chem. 2010, 20, 5797–5809. [Google Scholar] [CrossRef]
- Ip, A.H.; Thon, S.M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Sargent, E.H. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582. [Google Scholar] [CrossRef]
- Wang, R.; Shang, Y.; Kanjanaboos, P.; Zhou, W.; Ning, Z.; Sargent, E.H. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 2016, 9, 1130–1143. [Google Scholar] [CrossRef]
- Ning, Z.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J.; Sargent, E.H. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822–828. [Google Scholar] [CrossRef]
- Gong, W.; Wang, P.; Deng, W.; Zhang, X.; An, B.; Li, J.; Sun, Z.; Dai, D.; Liu, Z.; Li, J.; et al. Limiting factors of detectivity in near-infrared colloidal quantum dot photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 25812–25823. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Miller, E.M.; Luther, J.M.; Beard, M.C. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 2014, 8, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Z.; Huo, N.; Li, F.; Gu, M.; Ling, X.; Ma, W. Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 2019, 10, 5136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Shen, G.; Chen, M.; Guyot-Sionnest, P. Synthesis of nonaggregating HgTe colloidal quantum dots and the emergence of air-stable n-doping. J. Phys. Chem. Lett. 2017, 8, 2224–2228. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R.; Kahn, L.R.; Bobrowicz, F.W. A binitio studies of AuH, AuCl, HgH and HgCl2 using relativistic effective core potentials. J. Chem. Phys. 1978, 69, 984–997. [Google Scholar] [CrossRef]
- Kim, T.K.; Lorenc, M.; Lee, J.H.; Russo, M.L.; Kim, J.; Cammarata, M.; Ihee, H. Spatiotemporal reaction kinetics of an ultrafast photoreaction pathway visualized by time-resolved liquid X-ray diffraction. Proc. Natl. Acad. Sci. USA 2006, 103, 9410–9415. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.Q.; Ni, R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl. Phys. Lett. 2008, 92, 093123. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhou, L.P.; Peng, X.F. Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Thermophys. 2006, 27, 139–151. [Google Scholar] [CrossRef]
- Yu, W.W.; Peng, X. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Edit. 2002, 41, 2368–2371. [Google Scholar] [CrossRef]
- Wang, S.; McGuirk, C.M.; d’Aquino, A.; Mason, J.; Mirkin, C. Metal–organic framework nanoparticles. Adv. Mater. 2018, 30, 1800202. [Google Scholar] [CrossRef]
- Voorhees, P.W. The theory of Ostwald ripening. J Stat. Phys. 1985, 38, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Goubet, N.; Jagtap, A.; Livache, C.; Martinez, B.; Portalès, H.; Xu, X.; Lobo, R.; Dubertret, B.; Lhuillier, E. Terahertz HgTe nanocrystals: Beyond confinement. J. Am. Chem. Soc. 2018, 140, 5033–5036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehead, C.B.; OÖZkar, S.; Finke, R.G. LaMer’s 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: A historical look at the model’s origins, assumptions, equations, and underlying sulfur sol formation kinetics data. Chem. Mater. 2019, 31, 7116–7132. [Google Scholar] [CrossRef]
- Chu, J. HgTe: Lattice parameter. Landolt Börnstein 2009, 44, 206. [Google Scholar]
- Inoue, M.; Hirasawa, I. The relationship between crystal morphology and XRD peak intensity on CaSO4·2H2O. J. Cryst. Growth. 2013, 380, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Mengyu, C.; Haipeng, L.; Nema, M.A.; Ye, Z.; Zhen, W.; Wei, R.; Stephen, V.K.; Andrey, L.R.; Ni, Z. Mercury telluride quantum dot based phototransistor enabling high-sensitivity room-temperature photodetection at 2000 nm. ACS Nano 2017, 11, 5614–5622. [Google Scholar]
- Chao, X.; Feng, Y. Enhanced performance of perovskite/organic-semiconductor hybrid heterojunction photodetectors with electron trapping effect. J. Mater. Chem. C 2018, 6, 1338–1342. [Google Scholar]
- Dolatyari, M.; Rostami, A.; Mathur, S.; Klein, A. Trap engineering in solution processed PbSe quantum dots for highspeed MID-infrared photodetectors. J. Mater. Chem. C 2019, 7, 5658–5669. [Google Scholar] [CrossRef]
- Loef, R.; Houtepen, A.J.; Talgorn, E.; Schoonman, J.; Goossens, A. Temperature dependence of electron transport in CdSe quantum dot films. J. Phys. Chem. C 2009, 113, 15992–15996. [Google Scholar] [CrossRef]
- Ju, T.; Graham, R.L.; Zhai, G.; Rodriguez, Y.W.; Breeze, A.J.; Yang, L.; Carter, S.A. High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature. Appl. Phys. Lett. 2010, 97, 043106. [Google Scholar] [CrossRef]
- Mitin, V.; Reggiani, L.; Varani, L. Generation-recombination noise in semiconductors. In Noise and Fluctuations Control in Electronic Devices; American Scientific Publishers: Stevenson Ranch, CA, USA, 2002; pp. 11–30. [Google Scholar]
- Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photon. 2011, 5, 489–493. [Google Scholar] [CrossRef]
- Chen, M.; Lan, X.; Tang, X.; Wang, Y.; Hudson, M.H.; Talapin, D.; Guyot-Sionnest, P. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors. ACS Photon. 2019, 6, 2358–2365. [Google Scholar] [CrossRef]
- Martinez, B.; Rmade, J.; Livache, C.; Goubet, N.; Chu, A.; Gréboval, C.; Qu, J.; Watkins, W.L.; Becerra, L.; Dandeu, E.; et al. HgTe nanocrystal inks for extended short-wave infrared detection. Adv. Optical Mater. 2019, 7, 1900348. [Google Scholar] [CrossRef]
HgTe CQD | Peak | Binding Energy (eV) | Atomic Concentration (%) | Hg:Te Atomic Ratio | I:Hg Atomic Ratio |
---|---|---|---|---|---|
11 nm | Hg 4f | 99.22 | 46.8 | 1.11 | 0.23 |
Te 3d | 572 | 42.3 | |||
I 3d | 618.36 | 10.9 | |||
15 nm | Hg 4f | 99.68 | 47.2 | 1.08 | 0.17 |
Te 3d | 572.17 | 44.9 | |||
I 3d | 618.22 | 7.9 |
Mode | λcutoff (μm) | Operating Temperature (K) | Frequency (Hz) | Noise Current Density (A·Hz1/2) | Ref. |
---|---|---|---|---|---|
Photoconductor | 4.5 | 270 K | 10 | ~7 × 10−9 | [54] |
4 | 298 K | 10 | ~10−10 | [55] | |
5 | 280 K | 10 | ~10−11 | This work | |
Phototransistor | 2.5 | 298 K | 10 | ~10−11 | [48] |
2.5 | Room temperature | 10 | ~4 × 10−12 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, P.; Dong, R.; Gong, W.; Li, J.; Dai, D.; Yan, H.; Zhang, Y. Mid-Infrared HgTe Colloidal Quantum Dots In-Situ Passivated by Iodide. Coatings 2022, 12, 1033. https://doi.org/10.3390/coatings12071033
Liu Z, Wang P, Dong R, Gong W, Li J, Dai D, Yan H, Zhang Y. Mid-Infrared HgTe Colloidal Quantum Dots In-Situ Passivated by Iodide. Coatings. 2022; 12(7):1033. https://doi.org/10.3390/coatings12071033
Chicago/Turabian StyleLiu, Zekang, Peng Wang, Ran Dong, Wei Gong, Jingjie Li, Dichao Dai, Hui Yan, and Yongzhe Zhang. 2022. "Mid-Infrared HgTe Colloidal Quantum Dots In-Situ Passivated by Iodide" Coatings 12, no. 7: 1033. https://doi.org/10.3390/coatings12071033
APA StyleLiu, Z., Wang, P., Dong, R., Gong, W., Li, J., Dai, D., Yan, H., & Zhang, Y. (2022). Mid-Infrared HgTe Colloidal Quantum Dots In-Situ Passivated by Iodide. Coatings, 12(7), 1033. https://doi.org/10.3390/coatings12071033