Sustainability Evaluation of AquaSun Antifouling Coating Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Economic Insight
2.2. Environmental Insight
2.3. Social Insight
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scandura, G.; Ciriminna, R.; Xu, Y.-J.; Pagliaro, M.; Palmisano, G. Nanoflower-like Bi2WO6 encapsulated in ORMOSIL as a novel photocatalytic antifouling and foul-release coating. Chem. Eur. J. 2016, 22, 7063–7067. [Google Scholar] [CrossRef]
- Scandura, G.; Ciriminna, R.; Ozer, L.Y.; Meneguzzo, F.; Palmisano, G.; Pagliaro, M. Antifouling and photocatalytic antibacterial activity of the AquaSun coating in seawater and related media. ACS Omega 2017, 2, 7568–7575. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.M.; Kristensen, J.B.; Laursen, B.S.; Pedersen, L.T.; Dam-Johansen, K.; Kiil, S. Antifouling effect of hydrogen peroxide release from enzymatic marine coatings: Exposure testing under equatorial and Mediterranean conditions. Prog. Org. Coat. 2010, 68, 248–252. [Google Scholar] [CrossRef]
- Elzanowska, H.; Wolcott, R.G.; Hannum, D.M.; Hurst, J.K. Bactericidal properties of hydrogen peroxide and copper or iron-containing complex ions in relation to leukocyte function. Free Radic. Biol. Med. 1995, 18, 437–449. [Google Scholar] [CrossRef]
- Detty, M.R.; Ciriminna, R.; Bright, F.V.; Pagliaro, M. Environmentally benign sol–gel antifouling and foul-releasing coatings. Acc. Chem. Res. 2014, 47, 678–687. [Google Scholar]
- Scurria, A.; Scolaro, C.; Sfameni, S.; di Carlo, G.; Pagliaro, M.; Visco, A.M.; Ciriminna, R. Towards AquaSun practical utilization: Strong adhesion and lack of ecotoxicity of solar-driven antifouling sol-gel coating. Prog. Org. Coat. 2022, 165, 106771. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Palmisano, G.; Ilharco, L.M.; Pagliaro, M. Silica-based sol-gel coatings: A critical perspective from a practical viewpoint. In Bio-Based and Environmentally Benign Coatings; Tiwari, A., Soucek, M.D., Eds.; John Wiley & Sons and Scrivener Publishing: Beverly, MA, USA, 2016; pp. 149–158. [Google Scholar]
- Tang, Y.; Finlay, J.A.; Kowalke, G.L.; Meyer, A.E.; Bright, F.V.; Callow, M.E.; Callow, J.A.; Wendt, D.E.; Detty, M.R. Hybrid xerogel films as novel coatings for antifouling and fouling release. Biofouling 2005, 21, 59–71. [Google Scholar] [CrossRef][Green Version]
- Detty, M.R.; Ciriminna, R.; Bright, F.V.; Pagliaro, M. Xerogel coatings produced by the sol–gel process as anti-fouling, fouling-release surfaces: From lab bench to commercial reality. ChemNanoMat 2015, 1, 148–154. [Google Scholar]
- Svensson, G.; Ferro, C.; Høgevold, N.; Padin, C.; Varela, J.C.S.; Sarstedt, M. Framing the triple bottom line approach: Direct and mediation effects between economic, social and environmental elements. J. Clean. Prod. 2018, 197, 972–991. [Google Scholar] [CrossRef]
- Parkhill, R.L.; Knobbe, E.T.; Donley, M.S. Application and evaluation of environmentally compliant spray-coated ormosil films as corrosion resistant treatments for aluminum 2024-T3. Prog. Org. Coat. 2001, 41, 261–265. [Google Scholar] [CrossRef]
- Zhang, Y.; Ciriminna, R.; Palmisano, G.; Xu, Y.-J.; Pagliaro, M. Sol-gel entrapped visible light photocatalysts for selective conversions. RSC Adv. 2014, 4, 18341–18346. [Google Scholar] [CrossRef]
- Yao, B.; Wang, L.; Li, Z.; Xing, X.; Ma, Z.; Wang, Y.; Liu, Y.; He, J.; Zheng, G.; Zhang, F. Cost-effective Bi2WO6 for the efficient degradation rhodamine B and tetracycline. SSRN Pap. 2022. [Google Scholar] [CrossRef]
- Garrido, R.; Silvestre, J.D.; Flores-Colen, I.; de Fátima Júlio, M.; Pedroso, M. Economic assessment of the production of subcritically dried silica-based aerogels. J. Non-Cryst. Sol. 2019, 516, 26–34. [Google Scholar] [CrossRef]
- Ciriminna, R.; della Pina, C.; Falletta, E.; Teles, J.H.; Pagliaro, M. Industrial applications of gold catalysis. Angew. Chem. Int. Ed. 2016, 55, 14210–14217. [Google Scholar] [CrossRef]
- Pagliaro, M. An industry in transition: The chemical industry and the megatrends driving its forthcoming transformation. Angew. Chem. Int. Ed. 2019, 58, 11154–11159. [Google Scholar] [CrossRef]
- See, for Example, the SS-5000A Silicone Slip Clean Hull and Anti-Fouling Coating. Available online: https://siliconesolutions.com/catalog/product/view/_ignore_category/1/id/1366/s/ss-5000a/ (accessed on 15 June 2022).
- Prescient Strategic Intelligence, Bismuth Nitrate Market Research Report, Delhi. 2020. Available online: https://www.psmarketresearch.com/market-analysis/bismuth-nitrate-market-report (accessed on 19 July 2022).
- IndustryARC. Sodium Tungstate Market—Forecast (2021–2026), Hyderabad. 2022. Available online: https://www.industryarc.com/Research/Sodium-Tungstate-Market-Research-501533 (accessed on 19 July 2022).
- Ciriminna, R.; Pagliaro, M. Open challenges in sol-gel science and technology. J. Sol.-Gel. Sci. Technol. 2022, 191, 29–36. [Google Scholar] [CrossRef]
- Ciriminna, R.; Bright, F.V.; Pagliaro, M. Ecofriendly antifouling marine coatings. ACS Sust. Chem. Eng. 2015, 3, 559–565. [Google Scholar] [CrossRef]
- Blossom, N.; Szafranski, F.; Lotz, A. Use of copper-based antifouling paint: A US regulatory update. CoatingsTech 2018, 15, 63–68. [Google Scholar]
- Paz-Villarraga, C.A.; Castro, Í.B.; Fillmann, G. Biocides in antifouling paint formulations currently registered for use. Environ. Sci. Pollut. Res. 2022, 29, 30090–30101. [Google Scholar] [CrossRef]
- Howell, D.; Berhends, B. Consequences of antifouling coatings—The chemist’s perspective. In Biofouling; Dürr, S., Thomason, J.C., Eds.; Blackwell Publishing: Oxford, UK, 2009; pp. 226–242. [Google Scholar] [CrossRef]
- Amara, I.; Miled, W.; Slama, R.B.; Ladhari, N. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 2018, 57, 115–130. [Google Scholar] [CrossRef]
- Cima, F.; Varello, R. Potential disruptive effects of copper-based antifouling paints on the biodiversity of coastal macrofouling communities. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.P.; Bendick, J.A.; Holm, E.R.; Hertel, W.M. Economic impact of biofouling on a naval surface ship. Biofouling 2010, 27, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Williams, D. (Safinah Group). Quantifying the Scale of the Barnacle Fouling Problem on the Global Shipping Fleet, Gateshead (GB). 2020. Available online: https://www.rivieramm.com/whitepapers/whitepapers/quantifying-the-scale-of-the-barnacle-fouling-problem-on-the-global-shipping-fleet (accessed on 19 July 2022).
- Moser, C.S.; Wier, T.P.; First, M.R.; Grant, J.F.; Riley, S.C.; Robbins-Wamsley, S.H.; Tamburri, M.N.; Ruiz, G.M.; Miller, A.W.; Drake, L.A. Quantifying the extent of niche areas in the global fleet of commercial ships: The potential for “super-hot spots” of biofouling. Biol. Invasions 2017, 19, 1745–1759. [Google Scholar] [CrossRef]
- Global Industry Analysts. Antifouling Coatings—Global Market Trajectory & Analytics; Global Industry Analysts: San Francisco, CA, USA, 2021. [Google Scholar]
- Liu, J.-H.; Zhang, Q.-P.; Sun, N.; Zhao, Y.; Shi, R.; Zhou, Y.-L.; Zheng, J. Elevated gamma-rays shielding property in lead-free bismuth tungstate by nanofabricating structures. J. Phys. Chem. Solids 2018, 112, 185–189. [Google Scholar] [CrossRef]
- Laine, R.M.; Furgal, J.C.; Doan, P.; Pan, D.; Popova, V.; Zhang, X. Avoiding carbothermal reduction: Distillation of alkoxysilanes from biogenic, green, and sustainable sources. Angew. Chem. Int. Ed. 2016, 55, 1065–1069. [Google Scholar] [CrossRef]
- Carreño, A.; Lloret, J. Environmental impacts of increasing leisure boating activity in Mediterranean coastal waters. Ocean Coast. Manag. 2021, 209, 105693. [Google Scholar] [CrossRef]
- Harino, H.; Ohji, M.; Wattayakorn, G.; Arai, T.; Rungsupa, S.; Miyazaki, N. Occurrence of antifouling biocides in sediment and green mussels from Thailand. Arch. Environ. Contam. Toxicol. 2006, 51, 400–407. [Google Scholar] [CrossRef]
- Fang, H.; Wang, X.; Song, W. Technology selection for photovoltaic cell from sustainability perspective: An integrated approach. Renew. Energy 2020, 153, 1029–1041. [Google Scholar] [CrossRef]
- NanoPhos SA. Available online: https://ec.europa.eu/futurium/en/tech-society-2020/nanophos-sa.html (accessed on 19 July 2022).
- Lewek, P.; Karda, P. Generic drugs: The benefits and risks of making the switch. J. Fam. Pract. 2010, 59, 634–640. [Google Scholar]
- Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y.-J. Nanochemistry-derived Bi2WO6 nanostructures: Towards sustainable chemicals and fuels production induced by visible light. Chem. Soc. Rev. 2014, 43, 5276–5287. [Google Scholar] [CrossRef]
- Hannen, J.; Antons, D.; Piller, F.; Salge, T.O.; Coltman, T.; Devinney, T.M. Containing the not-invented-here syndrome in external knowledge absorption and open innovation: The role of indirect countermeasures. Res. Policy 2019, 48, 103822. [Google Scholar] [CrossRef]
Material | Amount (L) | Unit Price (USD/kg) |
---|---|---|
Bi2WO6 | 0.2232 (kg) | 8 |
TEOS | 3.56 | 1 a |
n-octadecyltrimethoxysilane | 0.16 | 1 b |
n-octyltriethoxysilane | 5.2 | 1 c |
2-propanol | 10.4 | 1.1 d |
Hydrochloric acid (0.1 N) | 2 | 1.4 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciriminna, R.; Scurria, A.; Pagliaro, M. Sustainability Evaluation of AquaSun Antifouling Coating Production. Coatings 2022, 12, 1034. https://doi.org/10.3390/coatings12071034
Ciriminna R, Scurria A, Pagliaro M. Sustainability Evaluation of AquaSun Antifouling Coating Production. Coatings. 2022; 12(7):1034. https://doi.org/10.3390/coatings12071034
Chicago/Turabian StyleCiriminna, Rosaria, Antonino Scurria, and Mario Pagliaro. 2022. "Sustainability Evaluation of AquaSun Antifouling Coating Production" Coatings 12, no. 7: 1034. https://doi.org/10.3390/coatings12071034