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Abstract: Today, colloidal quantum dots (CQDs) have received wide attention due to their properties
of tunable infrared absorption. For example, HgTe colloidal quantum dots have shown excellent
optical absorption (absorption coefficient α > 104 cm−1), spectral absorption tunability covering the
entire infrared atmospheric window, and even the terahertz (THz). However, the efficient surface
passivation of HgTe CQDs was limited by the highly sterically hindered long-chain organic ligands.
Here, we demonstrate a new method to synthesize monodisperse mid-infrared HgTe CQDs, and
the preparation process of the Hg precursor solution is optimized. With I− in-situ passivated on the
surfaces, the spherical HgTe quantum dots are successfully synthesized with the tunability size from
8 to 15 nm. The noise current density of the photoconductive device is as low as 10−11 A·Hz−1/2 at
130 K with a frequency of 1 Hz.

Keywords: HgTe CQDs; mid-infrared; in-situ passivation

1. Introduction

Mid-infrared photodetectors based on inorganic semiconductor materials, such as
HgCdTe [1], III–V AlGaAs/GaAs epitaxial quantum dot [2,3], and InAs/GaInSb Type
II superlattices [4,5], can achieve higher sensitivity and faster speed. However, these
materials are achieved by epitaxial growth on lattice-matched substrates by molecular
beam epitaxy or chemical vapor deposition, which leads to high costs [6,7]. Colloidal
quantum dots (CQDs) have attracted extensive attention due to their liquid-phase synthesis
and processing which greatly reduces the cost [8], tunable optical bandgap [9,10], and
surface ligand-regulated doping [11]. As a semimetal [12], the bandgap of HgTe can be
tuned from 1.5 eV for quantum confinement effect to virtually zero [13], and the absorption
spectrum can be tuned over the entire infrared spectral range.

There have been many advances in the synthesis methods of metal sulfide colloidal
quantum dots. Previously, the aqueous phase method and the epitaxial growth method
were widely used [14–17]. In 1993, Bawendi et al. used thermal injection technology to
synthesize nanocrystals in the organic phase for the first time [18], creating a new direction
for the synthesis of colloidal quantum dots (CQDs) in organic solvents. Compared with
the aqueous phase method, this method has a shorter process time, better size control,
and higher quantum yield [19]. With the developments of recent years, hot injection
technology has gradually become the preferred method for the synthesis of CQDs [20,21].
Nowadays, HgTe CQDs have been used for near-infrared, mid-infrared, and long-wave
infrared detection [21–27]. Among these different synthetic methods, good size-tunable
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mid-infrared colloidal quantum dots have been obtained by using HgCl2 and Te in tri-n-
octylphosphine (TOPTe) as raw materials to react in long-chain amine organic coordination
solvents [26], with narrow photoluminescence (PL) peaks and full width at a half-maximum
often less than 500 cm−1. However, there are still two problems for the synthesis of HgTe
CQDs. Firstly, the surface stabilities are so weak when amines are worked as ligands that
they easily fall off during the centrifugal purification stage, leading to the agglomeration
of quantum dots. Meanwhile, thiols have strong binding energies with the Hg sites on
the surface of HgTe CQDs [28], and this is difficult to achieve in the subsequent surface
modification process. Secondly, during the synthesis stage of CQDs, good colloid dispersion
can be achieved by the utilization of long-chain organic molecules as ligands, but these
long-chain organic molecules have great steric hindrance due to the influence of their
own volume [29,30]. After binding on the surface of quantum dots, the space of adjacent
passivation sites is not sufficient to meet the entry of new organic molecules, resulting
in incomplete passivation with numerous dangling bands on the surfaces of CQDs. Trap
states would be formed for the reaction at these sites with water or oxygen before the
process of the subsequent ligand exchange to achieve surface chemical modification and
efficient passivation, which would decrease the performance of the devices. Thus, it is
necessary to find a synthetic method to achieve effective surface passivation as well as
good colloidal stability.

Beyond the long organic chains, halide ions are also utilized as surface ligands. In 2012,
the Sargent group introduced metal halides (CdCl2 dissolved in TDPA and oleylamine)
during the synthesis process, and realized that the halide ions passivated CQDs, achieving
better surface defect state passivation. This also sparked a new idea for ligand engineer-
ing [29]. In 2014, Zhijun Ning studied the effect of different halide ions’ passivation of
CQDs and proved that the passivation of I− had protected the surface against the attack
of oxygen more effectively [31]. The test established that CQDs passivated by I− had a
lower defect density compared with those passivated by other halide ions. By far, CQDs
passivation by I− is still the best passivation method. Moreover, the studies regarding the
noises of CQDs photodetectors passivated by halide ions have been reported. In previous
studies, using 1-ethyl-3-methylimidazolium iodide (EMII) and tetrabutylammonium iodide
(TBAI) as the raw material for ligand exchange could achieve the surface passivation effect
of I−, the density of trap states is significantly reduced, and the noise current density of the
fabricated junction device was as low as 10−11 A·Hz−1/2 at room temperature [32]. With
the development of synthesis technology, I− passivation can also be achieved during the
synthesis of CQDs. Matthew C. Beard’s group demonstrated that PbI2 can be used as a raw
material for the synthesis of in-situ passivated PbS CQDs [33]. Subsequently, the WanLi
Ma group realized a one-step preparation of PbS CQDs ink passivated by I−, using PbI2 to
synthesize in-situ passivated PbS CQDs. The devices preparation process has been greatly
simplified while maintaining performance [34]. These studies fully demonstrate that halide
ions, especially I−, can be used as ligands to achieve good surface passivation.

Here, we use HgI2 as the Hg source to realize the idea of I− surface passivation
during the synthesis process, for the soft base I− bound strongly to the soft acid Hg2+ [35].
It is, however, difficult to break the strong binding energy of Hg–I to form a monomer
for the reaction during the preparation of the precursor solution, therefore we mainly
researched the preparation temperatures during this process. The strong Hg–I bond was
successfully destroyed, and the I− coated HgTe CQDs were synthesized. At the same time,
bis(trimethylsilyl) telluride (TMSTe) is utilized as a Te source for its high reactivity so that
it will not be coated on the surface of quantum dots as a ligand and limit the reactivity of
another monomer [36]. As a result, I− in-situ passivated HgTe CQDs were successfully
synthesized with the size tunability from 8 to 15 nm. Furthermore, a photoconductive
device was fabricated achieving good detection under 2000 nm light by lowering the
temperature, and the noise of this device was as low as 10−11 A·Hz−1/2 at 130 K with the
frequency of 1 Hz.
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2. Materials and Methods
2.1. Material Synthesis

CAS number: Mercury iodide (7783-30-4), bis(trimethylsilyl)telluride (4551-16-0),
Oleylamine (112-90-3), Tetrachloroethylene (127-18-4), n-Hexane (110-54-3), Methanol
anhydrous (67-56-1), Ethanol absolute (64-17-5).

For Hg precursor solution, 4 mL oleylamine was taken, injected into a three-necked
flask, degassed at 155 ◦C for 3 h to remove water and absorbed CO2, then cooled to room
temperature under N2 atmosphere, and stored in a glove box. 45.4 mg HgCl2 (0.1 mmol)
was dissolved in 4 mL of oleylamine in a 100 mL three-necked flask. Under the Schlenk
line, the Hg precursor solution was degassed at room temperature for 20 min, and then it
was degassed at 140 ◦C for another 1 h. Later, the temperature was lowered to the injection
temperature of 120 ◦C, with N2 introduced, and the temperature was maintained for 20 min
until the temperature was stable. For Te precursor solution, 14 µL TMSTe (0.05 mmol)
and 0.5 mL hexane were mixed in a 10 mL glass vial in a glove box and removed by a
syringe. When it was injected into the flask at 120 ◦C, the clear solution immediately turned
black, the growth temperature was controlled at the same time as the timing was started,
and the temperature was selected between 115–120 ◦C. The reaction was quenched by
injection of 15 mL of tetrachloroethylene (TCE). The size of the quantum dots is controlled
by controlling the injection temperature and growth time. After the reaction, it was purified
with methanol, and the volume ratio of methanol to tetrachloroethylene was 2:1. After
precipitation, it was rinsed three times with anhydrous ethanol, and finally dispersed in
TCE and stored in a glove box.

2.2. Device Preparation

Si/SiO2 slices were cut into 0.7 cm × 0.7 cm and cleaned by acetone, anhydrous
ethanol, and deionized water. The photoresist AZ5214 was spined onto the silicon wafer
at a speed of 500 r.p.m. 10 s and 4000 r.p.m. 50 s, and baked on a baking tray at 110 ◦C
for 3 min to ensure that the photoresist was fully dry. The silicon wafer was exposed to
UV light for 1.2 s with an MJB4 mask. The silicon wafer was then placed in a drying oven
at 125 ◦C for 2 min 8 s. After it was taken out, a pan-exposure was performed for 22 s
under UV light. The exposed silicon wafer was placed into the developer for 39 s and
rinsed with deionized water for 10 s. The substrate was cleaned under oxygen plasma and
dried for 5 min to remove excess developer. The electrodeposition method was by electron
beam evaporation. Firstly, 10 nm Ti was steamed and plated as the adhesion layer, and
then 70 nm Au was deposited. The lift-off was operated in acetone for 1 h, and washed
by ethanol and deionized water. HgTe QDs were dispersed in the solvent configured to
25 mg/mL, and filtered by 0.45 µm filter on the substrate. Subsequently, the substrate was
rotated at 2000 r.p.m. 30 s and baked on the baking tray at 40 ◦C for 30 s. Later, the QDs
film was treated by EDT solution for solid matching exchange. After 20 s, it was cleaned
with anhydrous ethanol for 5 times, and then baked on the baking tray for 30 s. The above
steps were repeated 15 times to obtain ~ 200 nm HgTe CQDs film. The length and width of
the channel were 55 and 9 µm, respectively.

2.3. Characterization

Transmission electron microscope (TEM) images were taken from SU9000 FE-STEM
(Hitachi, Tokyo, Japan) and JEM-2100F(Nippon electronics, Tokyo, Japan) transmission
electron microscope at 30, 200 kV. The nanocrystal samples for TEM were obtained by
depositing these solutions onto ultrathin carbon-coated copper TEM grids. X-ray diffrac-
tion (XRD) patterns were carried out on a Bruker D8 ADVANCE diffractometer (Bruker,
Karlsruhe, Germany) with Cu radiation. The absorption spectra of HgTe CQDs were
measured in the transmission mode by Fourier-transform infrared (FTIR) spectrometer,
where the CQDs were dropped on a CaF2 substrate. FTIR spectra were acquired using
Fischer Nicolet iS50 (Thermo fisher, Boston, MA, USA). X-ray photoelectron spectroscopy
(XPS) patterns were carried out on a Thermo Scientific Escalab 250Xi (Thermo scientific,
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Boston, MA, USA). The HgTe CQDs films for XPS test were made by drop-coating onto
Si/SiO2 substrate. A semiconductor analyzer Agilent B1500A (Agilent, Santa Clara, CA,
USA) was used to measure the optoelectronic responses of the devices. The light source
was a supercontinuum light source (SuperKExtreme, NKT Photonics, Berlin, Germany)
coupled with a monochromator (SOL instrument, MS 2004i, Belarus).

3. Results and Discussion

The main raw materials used in the preparation of HgTe CQDs are HgI2, TMSTe
and oleylamine, and oleylamine is used as the solvent for the reaction. We prepare HgTe
CQDs using a 2:1 stoichiometric ratio of HgI2 and TMSTe, and the excess Hg precur-
sor acts as a ligand to bind to the surface Te sites, which is beneficial to the stability of
the quantum dots [35]. The injection temperature, as one of the most important factors
during hot injection reaction process, has been studied first in this work. Comparing
the previous works with Hg precursors fabricated by HgCl2, the temperature of the Hg
monomer formed by HgI2 could be calculated. Previous studies have shown that the dis-
sociation energy of HgCl2 → Hg2+ + 2Cl− is 445.18 kJ/mol, and the dissociation energy
of HgI2 → Hg2+ + 2I− is 559.3 kJ/mol [37,38]. The energy required for dissociating 0.1
mmol of Hg source is 44.52 J and 55.93 J, respectively, and the temperature required for
HgI2 is calculated using HgCl2. As a coordinating solvent, oleylamine assumes that all the
energy it absorbs is dissociated as HgCl2. According to the calculation formula of specific
heat capacity [39,40]

Q = Cm∆T, (1)

where C is the specific heat capacity of oleylamine, m is the mass of oleylamine, and ∆T is
the temperature change. According to the previous research, when HgCl2 is used as raw
material, ∆T is 80 ◦C, m is 4 g, and C is calculated to be 0.139. When it is brought into the
HgI2 system to calculate ∆T, the solution obtained is that ∆T is ~100 ◦C, so the dissociation
energy HgI2 temperature is therefore set at ~120 ◦C.

Considering to the previous reported method, the particle sizes of mid-infrared HgTe
CQDs should be controlled at about 7–12 nm [10], and the injection temperature is deter-
mined at 120 ◦C. For the preparation of the precursor, we dissolve HgI2 in oleylamine,
degassed at room temperature for 20 min, and then it is heated to 100 ◦C for 1 h to remove
soluble impurities such as water and CO2. The change of the quantum dots’ particle size
is observed by increasing the injection temperature which is set at 120, 130, and 140 ◦C,
respectively. It is found that the size distribution of quantum dots changed significantly
at different injection temperatures, and we initially speculated that the reaction process is
hindered by the strong binding energy of Hg–I at lower temperatures. With the increas-
ing temperature, the influence of the size distribution by Hg–I binding energy gradually
weakened. Figure 1a–c shows the distribution of HgTe CQDs at different injection tempera-
tures, and the size distribution of quantum dots gradually decreases with the increase of
injection temperature. We conclude that Hg–I can be destroyed at 140 ◦C to form stable
Hg precursors solution. However, the size of the synthesized quantum dots gradually
increased, and the particle size could reach 15 nm at the injection temperature of 140 ◦C. As
shown in Figure 1c, the particle size could not be controlled within the range of 7–12 nm.
Therefore, we propose a way to increase the preparation temperature of the precursor
solution and reduce the injection temperature. We increase the preparation temperature
of the precursor solution from the original 100 to 140 ◦C, and then reduce the injection
temperature to 120 ◦C under N2 atmosphere. HgTe CQDs of different sizes are obtained by
controlling different growth temperatures and growth time. Figure 1d–h shows the TEM
images of the morphology of quantum dots changing with the growth time at 120 ◦C and
the growth temperature at 120 ◦C. Figure 1i is a histogram of diameters for 100 quantum
dots with a growth time of 7 min.
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Figure 1. TEM images of the injection temperature at 110 ◦C (a), 120 ◦C (b), and 130 ◦C (c) for 10 min,
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1 min (d), 3 min (e), 5 min (f), 7 min (g), 10 min (h) growth time, scale bar, 20 nm; (i) Histogram of
diameters for 100 particles.

We also discuss the effect of different growth time and growth temperature on particle
size and size distribution. Figure 2a,b shows the relationship between particle size and
growth time at different growth temperatures. We can clearly see that these reactions at
different temperatures have completed the processes of explosive nucleation and rapid
growth within the first minute. With the extension of time, the particle size tends to a
stable value. We counted the size distribution histograms of grains at different growth
temperatures, the details of which are shown in Supplementary Figure S1. From the
statistics of the change of the peak width at half maximum with the growth time, it can be
seen that the full wide at half maximum (FWHM) reaches the minimum when the reaction
is carried out for 7 min. The size distribution at this time is the smallest, and the HgTe
CQDs are the most uniform (Figure 2c,d). Among them, at the growth temperature of
113 ◦C, the size of the colloidal quantum dots increases significantly after the first minute.
We speculate that this is due to the lower reaction temperature, the re-formation of Hg–I
bonds, the reduction of the concentration of precursors formed by Hg and ligands, and the
remaining monomer concentration also decreased. As a result, the ligand concentration
increases, while the reactivity of the monomer and the number of nucleation would be
suppressed. Finally, the formation of large-sized quantum dots is promoted, which is
consistent with the previous report [41].

The synthesis of HgTe CQDs satisfies the LaMer’s model and the Oswald ripening
process [42,43]. It can be seen from the figure that it is divided into three stages: explosive
nucleation, grain growth, and ripening. The size of CQDs increases with the growth time,
and all particle sizes tend to be consistent, which is in line with the general law of grain
growth, and also in line with the law of Oswald ripening process. However, as the growth
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time continues to prolong, the small grains will dissolve, and due to the concentration
gradient of the solute in the solution, they will diffuse to the surroundings of the large
grains again, and the relatively large grains will continue to grow, causing the FWHM
to continue to enlarge [44]. Comparing Figure 2a,b, the injection temperature increases
from 120 to 130 ◦C, and the particle size increases significantly under the same growth
time. According to the nucleation growth theory, the increase of the injection temperature
will lead to the formation of the ligand and Hg2+ complex, meaning that as the monomer
concentration decreases, the nucleation amount would decrease in the explosive nucleation
stage [41,45]. The diffusion and deposition rate of the monomer in the solution to the
crystal nucleus will become faster. Therefore, the size of the HgTe CQDs was larger at the
growth time.
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Figure 3a,b shows the FTIR absorption spectrum of 11 nm, 15 nm. It can be seen that
the CQDs obtained by the improved synthesis method have obvious absorption peaks,
and the cut-off wavelength can reach 5 µm. However, in the spectrum, the C–H peak
between 2800 and 2900 cm−1 can still be observed, indicating that the oleylamine long-
chain ligand is still partially retained, and only part of the I− in this synthesis method has
been in-situ passivated.

In order to analyze the crystal structure of HgTe CQDs, high resolution TEM (HRTEM)
and XRD have been tested. HRTEM images and XRD data are shown in Figure 3c,d. The
XRD test results (Figure 3d) show distinct peaks corresponding to the zinc-blende structure,
which are consistent with the previous literature reports [26], indicating the existence of
HgTe CQDs and the preparation method without changing the HgTe crystal structure.
The spherical particles display lattice spacing of 0.37 nm. Figure 3c shows TEM images of
crystal planes, consistent with the separation between (111) planes with a 6.46 Å lattice
constant of zinc-blende HgTe [46]. We observed the XRD diffraction pattern and found that
the peak intensity of the (111) face is much larger than that of other peak positions, and it is
very sharp, and the relative peak intensity is about 2.4 times higher than that of the (220)
plane, indicating that this synthesis method tends to retain (111) planes due to the slow
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growth of the facets. A considerable number of (111) planes are retained in the synthesized
spherically shaped HgTe CQDs [47].
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To ascertain the surface chemistry of the HgTe CQDs, we conduct XPS measurement.
It can be seen from Supplementary Figure S2 that all the peaks mainly belong to C, O, Si,
Hg, Te, and I elements. Among them, the characteristic peaks of Si and O are due to the
contamination caused by the attachment of debris of the sample substrate to the surface.
From the measured spectra in Figure 4a–c, 99.78 and 103.78 eV correspond to the peak
positions of Hg 4f 7/2 and Hg 4f 5/2, respectively, and 571.98 and 582.38 eV correspond to
the peak positions of Te 3d5/2 and Te 3d3/2, which fully verify the existence of HgTe. The I
3d peaks are also established in these results. The Hg/I of 11 nm HgTe CQDs calculated by
XPS is 0.23, which indicates the coating of I on the surface of the quantum dots. In order to
compare the surface chemical properties of HgTe CQDs with different particle sizes, XPS
tests are also performed on HgTe CQDs with a particle size of 15 nm. The experimental
results show that the peak positions of Hg 4f and Te 3d do not change, but the results show
that the ratio of I/Hg drops to 0.17 and the Hg/Te ratio is 1.08, which are mainly due to
the increase of the size of the HgTe CQDs. The Hg/Te ratio gradually tends to 1, and the
proportion of Hg sites on the surface coordinated to I gradually decreases, resulting in a
decrease in the Hg/I ratio. The XPS results are shown in Table 1.

Table 1. XPS results of different HgTe CQDs films.

HgTe CQD Peak Binding Energy (eV) Atomic Concentration (%) Hg:Te Atomic Ratio I:Hg Atomic Ratio

11 nm
Hg 4f 99.22 46.8

1.11 0.23Te 3d 572 42.3
I 3d 618.36 10.9

15 nm
Hg 4f 99.68 47.2

1.08 0.17Te 3d 572.17 44.9
I 3d 618.22 7.9
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In order to observe the coating effect of I− on the surface of HgTe CQDs more intu-
itively, the results of EDX spectrum are shown in Figure 4d–f. The distribution of each
colloidal quantum dot can be seen from the electronic image, as shown in Figure 4d. The
brighter area is the area in which HgTe CQDs are distributed, and the darker area is the
copper grids and the carbon grids area attached to the copper grids with no HgTe CQDs.
Among them, Hg and I elements are marked with two different colors of blue and pink,
respectively, as shown in Figure 4e,f. Comparing the electron image and the element
distribution map, it can be clearly seen by observing the blue marks that the particles in the
electron image are indeed composed of Hg elements, and the distributions of these two
elements are the same as that in the electron image. The particle distribution remains the
same. For the I element marked in pink, it can be seen that the distribution follows the
distribution of HgTe CQDs, confirming the conclusion that I− coated on the HgTe CQDs
surface. Figure S4 shows the EDX surface total spectrum.

To test the detection ability of the prepared HgTe CQDs, a photoconductive detector
is prepared. The process of device fabrication is shown in Figure 5. The idea size of the
quantum dot for photodetection is ~11 nm. The schematic diagram of the device is shown
in Figure 6a, and the I–t curve is tested under the light of 2000 nm, as shown in Figure 6b. At
room temperature, the optical signal is relatively weak, and the noise signal is large, which
drowns out the optical signal. In order to reduce the noise signal, the operating temperature
of the device was lowered and the performance changes are observed. The temperature is
lowered to 230, 180, 130, and 80 K, respectively, and the I–t curve of the device under 2000
nm illumination is tested, as shown in Figure 6c–f. When the temperature decreased from
room temperature to 230 K, the photo-response signal did not change significantly. The
photocurrent is small and the noise signal is large. When the temperature is dropped to
180 K and below, there is an obvious photo-response, and the photocurrent also increases
significantly with the noise signal dropped.

For devices, especially photoconductive devices, the recovery time is longer than the
response time. This is a common phenomenon, mainly due to the existence of defect states
on the surface of CQDs. The photo-generated carriers generated by the device under light
irradiation are trapped by the defect states, so that recovery time would be longer than the
response time due to the increased de-capture process [48–50].



Coatings 2022, 12, 1033 9 of 13

Coatings 2022, 12, x FOR PEER REVIEW 9 of 13 
 

 

For devices, especially photoconductive devices, the recovery time is longer than the 
response time. This is a common phenomenon, mainly due to the existence of defect 
states on the surface of CQDs. The photo-generated carriers generated by the device 
under light irradiation are trapped by the defect states, so that recovery time would be 
longer than the response time due to the increased de-capture process [48–50]. 

 
Figure 5. Flow chart of device fabrication: (a) spin coating of photoresist; (b) baking; (c) exposure; 
(d) inversion of baking; (e) pan exposure; (f) development; (g) electrode evaporation; (h) lift-off; (i) 
spin coating of CQDs. 

 
Figure 6. (a) Schematic diagram of the structure of the HgTe CQDs photoconductive device; I–t 
diagrams of the devices at 300 K (b), 230 K (c), 180 K (d), 130 K (e), and 80 K (f) under 2000 nm il-
lumination, respectively. 

As shown in Figure 7a, different photocurrents are normalized to discuss the rela-
tion between the photocurrent and temperature. The results show that no matter what 
wavelength of light is irradiated, the photocurrent increases significantly during the 
temperature change from 300 to 180 K, while the photocurrent changes little or decreases 
from 180 to 80 K. According to the transport mechanism of quantum dots at room tem-

Figure 5. Flow chart of device fabrication.

Coatings 2022, 12, x FOR PEER REVIEW 9 of 13 
 

 

For devices, especially photoconductive devices, the recovery time is longer than the 
response time. This is a common phenomenon, mainly due to the existence of defect 
states on the surface of CQDs. The photo-generated carriers generated by the device 
under light irradiation are trapped by the defect states, so that recovery time would be 
longer than the response time due to the increased de-capture process [48–50]. 

 
Figure 5. Flow chart of device fabrication: (a) spin coating of photoresist; (b) baking; (c) exposure; 
(d) inversion of baking; (e) pan exposure; (f) development; (g) electrode evaporation; (h) lift-off; (i) 
spin coating of CQDs. 

 
Figure 6. (a) Schematic diagram of the structure of the HgTe CQDs photoconductive device; I–t 
diagrams of the devices at 300 K (b), 230 K (c), 180 K (d), 130 K (e), and 80 K (f) under 2000 nm il-
lumination, respectively. 

As shown in Figure 7a, different photocurrents are normalized to discuss the rela-
tion between the photocurrent and temperature. The results show that no matter what 
wavelength of light is irradiated, the photocurrent increases significantly during the 
temperature change from 300 to 180 K, while the photocurrent changes little or decreases 
from 180 to 80 K. According to the transport mechanism of quantum dots at room tem-

Figure 6. (a) Schematic diagram of the structure of the HgTe CQDs photoconductive device; I–t
diagrams of the devices at 300 K (b), 230 K (c), 180 K (d), 130 K (e), and 80 K (f) under 2000 nm
illumination, respectively.

As shown in Figure 7a, different photocurrents are normalized to discuss the relation
between the photocurrent and temperature. The results show that no matter what wave-
length of light is irradiated, the photocurrent increases significantly during the temperature
change from 300 to 180 K, while the photocurrent changes little or decreases from 180 to
80 K. According to the transport mechanism of quantum dots at room temperature, be-
tween quantum dots and quantum dots, carriers are transported from one point to another
by hopping, or in a local area, carriers pass through by the ways of tunneling and transmit
to adjacent quantum dots. With the decrease of temperature, the direct tunneling barrier
of QDs will be reduced due to thermal shrinkage or the phase transition of ligands in the
early stage [51]. Subsequently, when the temperature drops, the carrier skip transfer will be
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affected by thermal activation [51,52]. The low temperature causes the slow of the carrier
skip transfer and the thermally activated hopping transport, so that the mobility would
be decreased. This mechanism proves that when the temperature decreases from 300 to
180 K, the ligand phase transition and thermal shrinkage of the film play a major role, and
the photocurrent increases significantly. When the temperature decreases below 130 K, the
thermally activated hopping transport is inhibited and the photocurrent decreases.
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The noise currents in the low and medium frequency regions (2πfτ << 1) are shown
in Figure 7b, ~10−11 A·Hz−1/2. For the noise in the low and middle frequency regions,
the random capture and emission of carriers by the trap center will cause the fluctuation
of the number of carriers in the device, resulting in 1/f noise [53]. It is well known
that after photo-generated carriers are generated, trap states emerging due to surface
passivation problems will capture photo-generated carriers, resulting in an increase in 1/f
noise current. Compared to previous studies [48,54–56], as shown in Table 2, the reduction
of the noise current in the mid-low frequency region also confirms the reduction of trap
states on the surface of the quantum dots, which again demonstrates the improvement of
the surface properties.

Table 2. Spectra of noise current density of HgTe CQD photodetectors.

Mode λcutoff (µm) Operating Temperature (K) Frequency (Hz) Noise Current Density (A·Hz1/2) Ref.

Photoconductor
4.5 270 K 10 ~7 × 10−9 [54]
4 298 K 10 ~10−10 [55]
5 280 K 10 ~10−11 This work

Phototransistor 2.5 298 K 10 ~10−11 [48]
2.5 Room temperature 10 ~4 × 10−12 [56]

4. Conclusions

In summary, we use HgI2 as the Hg source to synthesize mid-infrared HgTe CQDs. By
optimizing the preparation process of the precursor solution, the stable formation of the
Hg precursor solution breaks the Hg–I strong bond to the HgTe CQDs synthesis process.
The adjustment of 8–15 nm size is realized with the I− in-situ passivated on the surfaces.
A photoconductive device is prepared, which can achieve good detection under 2000 nm
light by lowering the temperature, and the noise of the photoconductive device is as low as
10−11 A·Hz−1/2 at 130 K with the frequency of 1 Hz. Furthermore, this work opens up a
new idea for the synthesis of HgTe CQDs and one-step preparation of inks. However, the
HgTe CQDs prepared in this paper are only partially coated on the surface of the quantum
dots as ligands, and there are still many oleylamine molecules as ligands to disperse the
quantum dots. For example, PbS and PbSe CQDs have made innovations in the synthesis
methods in recent years. The one-step hot injection synthesis of I− full-coated CQDs
ink can be achieved, the carrier mobility is significantly increased, and the defect state
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density is also significantly reduced. Therefore, future preparation methods also need to
be further studied, considering the organic reaction mechanism and acid-base synthesis
environment to promote the progress of the reaction and the coating of I−. For devices,
especially junction devices, the current band structure of HgTe CQDs ~ 10 nm particle
size is still not well matched with materials, and the study of homojunction energy band
structures still underdeveloped. The dark current cannot be effectively reduced, so the
selection of complementary materials for the mid-infrared HgTe heterojunction will also be
an important direction for future research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings12071033/s1, Figure S1: TEM images and histogram of
as-prepared HgTe CQDs sampled under 113 ◦C at 1 min, 3 min, 5 min, 7 min, 10 min reaction time,
Scale bar, 20 nm. Histogram of diameters for 100 particles; Figure S2: TEM images and histogram of
as-prepared HgTe CQDs sampled under 115 ◦C at 1 min, 3 min, 5 min, 7 min, 10 min reaction time,
Scale bar, 20 nm. Histogram of diameters for 100 particles; Figure S3: XPS overview for a thin film
of I− in situ passivated HgTe CQDs deposited on a Si/SiO2 substrate; Figure S4: EDX surface total
spectrum of I− in situ passivated HgTe CQDs film.
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