Preparation of Visible-Light Active Oxygen-Rich TiO2 Coatings Using Low Pressure Cold Spraying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Feedstock Powder
2.2. Spraying of 200, 600 Coatings
2.3. Feedstock Powder and Coatings Characterization
3. Results and Discussion
3.1. Crystal Structure Analysed Using X-ray Diffraction (XRD)
3.2. Morphology and Microstructure Analysed Using Scanning Electron Microscopy (SEM) Supported via Particle Size Analysis and Roughness Measurements
3.3. Optical Properties Analysed Using Diffuse Reflectance Spectroscopy (DRS)
3.4. Vibrational Characterization Using Raman Spectroscopy
Description | Scheme | Observed Shift (Figure 6) (cm−1) | Reported Shift (Literature Data) (cm−1) | ||
---|---|---|---|---|---|
FP | 200 | 600 | |||
Anatase Eg mode (symmetric stretching vibration of O–Ti–O) | 148 | 147 [50] | |||
O–O vibration involving three- and four-coordinate oxygen | 172 | 194 | 194 | 160–240 [62] | |
Anatase Eg mode (symmetric stretching vibration of O–Ti–O) | 198 [50] | ||||
Ti–OH vibration | 283 | 283 | 274 291 | 282 [41] 284 [40] | |
Oxygen vacancy (vO) (consequence of lack of oxygen) | 283 [52] 286 [39] | ||||
Ti–O bending and stretching vibration involving two-fold oxygen (X—unspecified atom) | ~382 | 388 | 380 [55] * | ||
Anatase B1g mode (anti-symmetric bending vibration of O–Ti–O) | ~400 | 400 | 398 [50] 400–425 [63] | ||
Ti–O bending vibration involving three-fold oxygen (consequence of lack of oxygen) | 450 | 455 | 440 [55] * 440 [61] | ||
Anatase A1g, B1g mode (symmetrcic and anti-symmetric bending vibration of O–Ti–O) | 525 | 507, 519 [50] | |||
Ti–O2 symmetric stretching vibration of triangular peroxy titanyl group | 531 | 524 | 524–529 [52] | ||
Anatase Eg mode (symmetric stretching vibration of O–Ti–O) | 639 | 626–640 [63] 640 [50] | |||
Ti–O–O stretching vibration (representing peroxo, superoxo or intermediate groups) | 686 | 700 | ~700 | 667 [54] | |
O–O stretching vibration of coordinated peroxide (O22−) species in triangular peroxy titanyl group | 913 | ~903 | ~900 | 860–900 [57] 910–914 [52] 916 [39] | |
Ti-O2 band vibration in triangular peroxy titanyl group | 1050 | 1050 | 1050 | 1050 [53] | |
O2− superoxide vibration | 1152 | 1145 | 1124–1148 [58] | ||
O–O vibration in H2O2 | 1347 | 1347 [64] 1385 [59] | |||
O–O stretching vibration in O2 (molecular oxygen) | 1552 | 1552 [59] | |||
OH bending vibration or scissoring of the chemisorbed and/or physisorbed water | 1637 | 1620 | 1625 | 1630 [60] | |
Precursor residuals vibration | 2317 | 2309 | 2320 | 2335 [54] | |
OH stretching vibration of hydroxyl groups from adsorbed water | ~3165 | 3166 | 3171 | 3050–3150 [59] | |
OH stretching vibration of H-bounded hydroxyl groups | 3332 | 3340 | 3315 | 3150–3500 [59] | |
OH stretching and bending vibration of surface mixed hydroxyl groups | 3466 | 3448 | 3457 | 3400–3600 [59] |
3.5. Visible-Light Photocatalytic Activity via Photobleaching of Methylene Blue
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, V.R.A.; Santos, P.R.M.; Silva, C.I.Q.; Azenha, M.A. Latest developments on TiO2-based photocatalysis: A special focus on selectivity and hollowness for enhanced photonic efficiency. Appl. Catal. A Gen. 2021, 623, 118243. [Google Scholar] [CrossRef]
- Bideau, M.; Claudel, B.; Dubien, C.; Faure, L.; Kazouan, H. On the “immobilization” of titanium dioxide in the photocatalytic oxidation of spent waters. J. Photochem. Photobiol. A Chem. 1995, 91, 137–144. [Google Scholar] [CrossRef]
- Sundar, K.P.; Kanmani, S. Progression of Photocatalytic reactors and it’s comparison: A Review. Chem. Eng. Res. Des. 2020, 154, 135–150. [Google Scholar] [CrossRef]
- Nagasawa, H.; Xu, J.; Kanezashi, M.; Tsuru, T. Atmospheric-pressure plasma-enhanced chemical vapor deposition of UV-shielding TiO2 coatings on transparent plastics. Mater. Lett. 2018, 228, 479–481. [Google Scholar] [CrossRef]
- Al Mashary, F.S.; Felix, J.F.; Ferreira, S.O.; de Souza, D.; Gobato, Y.G.; Chauhan, J.; Alexeeva, N.; Henini, M.; Albadri, A.M.; Alyamani, A.Y. Investigation of the structural, optical and electrical properties of indium-doped TiO2 thin films grown by Pulsed Laser Deposition technique on low and high index GaAs planes. Mater. Sci. Eng. B 2020, 259, 114578. [Google Scholar] [CrossRef]
- Badovinac, I.J.; Peter, R.; Omerzu, A.; Salamon, K.; Šarić, I.; Samaržija, A.; Perčić, M.; Piltaver, I.K.; Ambrožić, G.; Petravić, M. Grain size effect on photocatalytic activity of TiO2 thin films grown by atomic layer deposition. Thin Solid Films 2020, 709, 138215. [Google Scholar] [CrossRef]
- Al-Baradi, A.M. Sputtered and heat-treated TiO2 electrodes for dye-sensitized solar cells applications. Results Phys. 2020, 17, 103109. [Google Scholar] [CrossRef]
- Simeonov, S.; Szekeres, A.; Covei, M.; Spassov, D.; Kitin, G.; Predoana, L.; Calderon-Moreno, J.M.; Nicolescu, M.; Preda, S.; Stroescu, H.; et al. Inter-trap tunneling in vanadium doped TiO2 sol-gel films. Mater. Res. Bull. 2020, 127, 110854. [Google Scholar] [CrossRef]
- Pala, L.P.R.; Uday, V.; Gogoi, D.; Peela, N.R. Surface and photocatalytic properties of TiO2 thin films prepared by non-aqueous surfactant assisted sol-gel method. J. Environ. Chem. Eng. 2020, 8, 104267. [Google Scholar] [CrossRef]
- Doubi, Y.; Hartiti, B.; Hicham, L.; Fadili, S.; Batan, A.; Tahri, M.; Belfhaili, A.; Thevnin, P. Effect of annealing time on structural and optical proprieties of TiO2 thin films elaborated by spray pyrolysis technique for future gas sensor application. Mater. Today Proc. 2020, 30, 823–827. [Google Scholar] [CrossRef]
- Agrawal, A.; Siddiqui, S.A.; Soni, A.; Khandelwal, K.; Sharma, G.D. Performance analysis of TiO2 based dye sensitized solar cell prepared by screen printing and doctor blade deposition techniques. Sol. Energy 2021, 226, 9–19. [Google Scholar] [CrossRef]
- Roata, I.C.; Croitoru, C.; Pascu, A.; Stanciu, E.M. Photocatalytic coatings via thermal spraying: A mini-review. AIMS Mater. Sci. 2019, 6, 335–353. [Google Scholar] [CrossRef]
- Nawi, M.A.; Zain, S.M. Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution. Appl. Surf. Sci. 2012, 258, 6148–6157. [Google Scholar] [CrossRef]
- Moridi, A.; Hassani-Gangaraj, S.M.; Guagliano, M.; Dao, M. Cold spray coating: Review of material systems and future perspectives. Surf. Eng. 2014, 36, 369–395. [Google Scholar] [CrossRef]
- Gardon, M.; Guilemany, J.M. Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review. J. Therm. Spray Technol. 2014, 23, 595. [Google Scholar] [CrossRef] [Green Version]
- Winnicki, M. Advanced functional metal-ceramic and ceramic coatings deposited by low-pressure cold spraying: A review. Coatings 2021, 11, 1044. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Suo, X.; Latka, L.; Małachowski, A.; Lu, D.; Li, H. Cold Spray Construction of Nanostructured Titania Coatings for Photocatalytic Applications. J. Therm. Spray Technol. 2021, 30, 918–925. [Google Scholar] [CrossRef]
- Rokni, M.R.; Nutt, S.R.; Widener, C.A.; Champagne, V.K.; Hrabe, R.H. Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray. J. Therm. Spray Technol. 2017, 26, 1308–1355. [Google Scholar] [CrossRef]
- Yamada, M.; Isago, H.; Nakano, H.; Fukumoto, M. Cold spraying of TiO2 photocatalyst coating with nitrogen process gas. J. Therm. Spray Technol. 2010, 19, 1218–1223. [Google Scholar] [CrossRef]
- Omar, N.; Yamada, M.; Yasui, T.; Fukumoto, M. Bonding Mechanism of Cold-Sprayed TiO2 Coatings on Copper and Aluminum Substrates. Coatings 2021, 11, 1349. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Song, J. Numerical modeling of fracture in ceramic micro-particles and insights on ceramic retention during composite cold spray process. Surf. Coat. Technol. 2021, 409, 126830. [Google Scholar] [CrossRef]
- Kliemann, J.O.; Gutzmann, H.; Gärtner, F.; Hübner, H.; Borchers, C.; Klassen, T. Formation of cold-sprayed ceramic titanium dioxide layers on metal surfaces. J. Therm. Spray Technol. 2011, 20, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Baszczuk, A.; Jasiorski, M.; Winnicki, M. Low-Temperature Transformation of Amorphous Sol–Gel TiO2 Powder to Anatase during Cold Spray Deposition. J. Therm. Spray Technol. 2018, 27, 1551–1562. [Google Scholar] [CrossRef] [Green Version]
- Seremak, W.; Baszczuk, A.; Jasiorski, M.; Gibas, A.; Winnicki, M. Photocatalytic Activity Enhancement of Low-pressure Cold-Sprayed TiO2 Coatings Induced by Long-term Water Vapor Exposure. J. Therm. Spray Technol. 2021, 30, 1827–1836. [Google Scholar] [CrossRef]
- Schmidt, T.; Gärtner, F.; Assadi, H.; Kreye, H. Development of a generalized parameter window for cold spray deposition. Acta Mater. 2006, 54, 729–742. [Google Scholar] [CrossRef]
- Champagne, V.K.; Helfritch, D.J.; Dinavahi, S.P.G.; Leyman, P.F. Theoretical and Experimental Particle Velocity in Cold Spray. J. Therm. Spray Technol. 2011, 20, 425–431. [Google Scholar] [CrossRef]
- Yin, S.; Suo, X.; Liao, H.; Guo, Z.; Wang, X. Significant influence of carrier gas temperature during the cold spray process. Surf. Eng. 2014, 30, 443–450. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl. Catal. A Gen. 2010, 375, 1–11. [Google Scholar] [CrossRef]
- Rajaramanan, T.; Kumara, G.R.A.; Velauthapillai, D.; Ravirajan, P.; Senthilnanthanan, M. Ni/N co-doped P25 TiO2 photoelectrodes for efficient Dye-Sensitized Solar Cells. Mater. Sci. Semicond. Process 2021, 135, 106062. [Google Scholar] [CrossRef]
- Chang, C.Y.; Wu, N.L. Process analysis on photocatalyzed dye decomposition for water treatment with TiO2-coated rotating disk reactor. Ind. Eng. Chem. Res. 2010, 49, 12173–12179. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Pan, J.; Li, B.; Wu, L.; Jiang, B. Hydrothermal reduction of commercial P25 photocatalysts to expand their visible-light response and enhance their performance for photodegrading phenol in high-salinity wastewater. Appl. Surf. Sci. 2019, 480, 896–904. [Google Scholar] [CrossRef]
- Janczarek, M.; Kowalska, E. Defective Dopant-Free TiO2 as an Efficient Visible Light-Active Photocatalyst. Catalysts 2021, 11, 978. [Google Scholar] [CrossRef]
- Su, J.; Zou, X.; Chen, J.S. Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: New insights into defect chemistry of metal oxides. RSC Adv. 2014, 4, 13979–13988. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885. [Google Scholar] [CrossRef]
- Wu, Q.; Cheng, Y.; Huang, F.; Li, X.; Cui, X.; Xu, J.; Wang, Y. In-situ creating elastic lattice O–O bonds over semicrystalline yellow TiO2 nanoparticles for significantly enhanced photocatalytic H2 production. J. Hazard. Mater. 2019, 374, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Randorn, C.; Irvine, J.T.S.; Robertson, P. Synthesis of visible-light-activated yellow amorphous TiO2 photocatalyst. Int. J. Photoenergy 2008, 2008, 426872. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ganeshraja, A.S.; Jin, C.; Zhu, K.; Wang, J. One-pot synthesis visible-light-active TiO2 photocatalysts at low temperature by peroxotitanium complex. J. Alloys Compd. 2018, 765, 551–559. [Google Scholar] [CrossRef]
- Zou, J.; Gao, J.; Xie, F. An amorphous TiO2 sol sensitized with H2O2 with the enhancement of photocatalytic activity. J. Alloys Compd. 2010, 497, 420–427. [Google Scholar] [CrossRef]
- Lee, J.W.; Jeong, R.H.; Kim, D.I.; Yu, J.-H.; Nam, S.-H.; Boo, J.-H. Facile synthesis of amorphous Ti-peroxo complex for photocatalytic activity under visible-light irradiation. J. Clean. Prod. 2019, 239, 118013. [Google Scholar] [CrossRef]
- Vijayarangamuthu, K.; Youn, J.S.; Park, C.M.; Jeon, K.J. Facile synthesis of core–shell-structured rutile TiO2 with enhanced photocatalytic properties. Catal. Today 2020, 347, 18–22. [Google Scholar] [CrossRef]
- Han, E.; Vijayarangamuthu, K.; Youn, J.-S.; Park, Y.K.; Jung, S.C.; Jeon, K.J. Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties. Catal. Today 2018, 303, 305–312. [Google Scholar] [CrossRef]
- Hirakawa, T.; Yawata, K.; Nosaka, Y. Photocatalytic reactivity for O2− and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A Gen. 2007, 325, 105–111. [Google Scholar] [CrossRef]
- Gehrke, S.A.; Taschieri, S.; Del Fabbro, M.; Coelho, P.G. Positive Biomechanical Effects of Titanium Oxide for Sandblasting Implant Surface as an Alternative to Aluminium Oxide. J. Oral Implantol. 2015, 41, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Lee, C.S.; Kim, J.H.; Kim, J. Partially coated TiO2 on Al2O3 membrane for high water flux and photodegradation by novel filtration strategy in photocatalytic membrane reactors. Chem. Eng. Res. Des. 2020, 163, 138–148. [Google Scholar] [CrossRef]
- Hanft, D.; Exner, J.; Schubert, M.; Stöcker, T.; Fuierer, P.; Moos, R. An overview of the Aerosol Deposition method: Process fundamentals and new trends in materials applications. J. Ceram. Sci. Technol. 2015, 6, 147–181. [Google Scholar] [CrossRef]
- Özdemir, O.Ç.; Conahan, J.M.; Müftü, S. Particle Velocimetry, CFD, and the Role of Particle Sphericity in Cold Spray. Coatings 2020, 10, 1254. [Google Scholar] [CrossRef]
- Kang, X.; Berberidou, C.; Galeckas, A.; Bazioti, C.; Sagstuen, E.; Norby, T.; Poulios, I.; Chatzitakis, A. Visible Light Driven Photocatalytic Decolorization and Disinfection of Water Employing Reduced TiO2 Nanopowders. Catalysts 2021, 11, 228. [Google Scholar] [CrossRef]
- Verma, R.; Samdarshi, S.K.; Singh, J. Hexagonal Ceria Located at the Interface of Anatase/Rutile TiO2 Superstructure Optimized for High Activity under Combined UV and Visible-Light Irradiation. J. Phys. Chem. C 2015, 119, 23899–23909. [Google Scholar] [CrossRef]
- Choudhury, B.; Dey, M.; Choudhury, A. Defect generation, d-d transition, and bandgap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 2013, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, U.; Eror, N.G. Raman Spectra of Titanium Dioxide. J. Solid State Chem. 1982, 42, 276–282. [Google Scholar] [CrossRef]
- Bi, X.; Du, G.; Sun, D.; Zhang, M.; Yu, Y.; Su, Q.; Ding, S.; Xu, B. Room-temperature synthesis of yellow TiO2 nanoparticles with enhanced photocatalytic properties. Appl. Surf. Sci. 2020, 511, 145617. [Google Scholar] [CrossRef]
- Tengvall, P.; Vikinge, T.P.; Lundström, I.; Liedberg, B. FT-Raman Spectroscopic Studies of the Degradation of Titanium Peroxy Gels Made from Metallic Titanium and Hydrogen Peroxide. J. Colloid Interface Sci. 1993, 160, 10–15. [Google Scholar] [CrossRef]
- Patel, C.C.; Jere, G.V. Nature, stability and bonding of the peroxy group in peroxy titanium compounds. J. Inorg. Nucl. Chem. 1963, 25, 1155–1159. [Google Scholar] [CrossRef]
- Gyulavári, T.; Veréb, G.; Pap, Z.; Dombi, A.; Hernádi, K. Associating low crystallinity with peroxo groups for enhanced visible light active photocatalysts. Catal. Today 2018, 313, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Ren, N.; Li, R.; Chen, L.; Wang, G.; Liu, D.; Wang, Y.; Zheng, L.; Tang, W.; Yu, X.; Jiang, H.; et al. In situ construction of a titanate–silver nanoparticle–titanate sandwich nanostructure on a metallic titanium surface for bacteriostatic and biocompatible implants. J. Mater. Chem. 2012, 22, 19151. [Google Scholar] [CrossRef]
- Cramer, C.J.; Tolman, W.B.; Theopold, K.H.; Rheingold, A.L. Variable character of O—O and M—O bonding in side-on (η2) 1:1 metal complexes of O2. Proc. Natl. Acad. Sci. USA 2003, 100, 3635–3640. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, M.K.; Das, B. Direct synthesis of alkali-metal and ammonium pentafluoroperoxytitanates(IV), A3[Ti(O2)F5], and first synthesis and structural assessment of alkali-metal and ammonium difluorodiperoxytitanates(IV), A2[Ti(O2)2F2]. Inorg. Chem. 1986, 25, 168–170. [Google Scholar] [CrossRef]
- Eysel, H.H.; Thym, S. RAMAN Spectra of Peroxides. ZAAC J. Inorg. Gen. Chem. 1975, 411, 97–102. [Google Scholar] [CrossRef]
- Levanov, A.V.; Sakharov, D.V.; Dashkova, A.V.; Antipenko, E.E.; Lunin, V.V. Synthesis of Hydrogen Polyoxides H2O4 and H2O3 and Their Characterization by Raman Spectroscopy. Eur. J. Inorg. Chem. 2011, 2011, 5144–5150. [Google Scholar] [CrossRef]
- Šćepanović, M.; Grujić-Brojčin, M.; Abramović, B.; Golubović, A. Structural, morphological, and optical study of titania-based nanopowders suitable for photocatalytic applications. J. Phys. Conf. Ser. 2017, 794, 012003. [Google Scholar] [CrossRef]
- Kim, H.-M.; Miyaji, F.; Kokubo, T.; Nakamura, T. Apatite-Forming Ability of Alkali-Treated Ti Metal in Body Environment. J. Ceram. Soc. Jpn. 1997, 105, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, F. Raman Spectroscopy of Titania (TiO2) Nanotubular Water-Splitting Catalysts. J. Ark. Acad. Sci. 2011, 65, 43–48. [Google Scholar]
- Savinkina, E.V.; Obolenskaya, L.N.; Kuzmicheva, G.M.; Kabachkov, E.N.; Gainanova, A.A.; Zubavichus, Y.V.; Murzin, V.Y.; Sadovskaya, N.V. Introduction of peroxo groups into titania: Preparation, characterization and properties of the new peroxo-containing phase. CrystEngComm 2015, 17, 7113–7123. [Google Scholar] [CrossRef]
- Gardner, R.A. Intermedions in catalysis, spectroscopy and electron distribution. Part I. Hydrogen peroxide. J. Mol. Catal. 1986, 34, 85–94. [Google Scholar] [CrossRef]
- Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Phase Composition | Thickness [µm] | Bandgap [eV] | Coating Mass ** [mg] | MB Adsorption in DARK [%] | MB Degradation in VIS [%] |
---|---|---|---|---|---|---|
200 | Amorphous | 2–3 | 2.83 | <1 *** | negligible | 3.1 |
600 | Amorphous-anatase | 25–50 | 3.09 | 35 ± 9 | 3.95 | 17.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibas, A.; Baszczuk, A.; Jasiorski, M.; Winnicki, M.; Ociński, D. Preparation of Visible-Light Active Oxygen-Rich TiO2 Coatings Using Low Pressure Cold Spraying. Coatings 2022, 12, 475. https://doi.org/10.3390/coatings12040475
Gibas A, Baszczuk A, Jasiorski M, Winnicki M, Ociński D. Preparation of Visible-Light Active Oxygen-Rich TiO2 Coatings Using Low Pressure Cold Spraying. Coatings. 2022; 12(4):475. https://doi.org/10.3390/coatings12040475
Chicago/Turabian StyleGibas, Anna, Agnieszka Baszczuk, Marek Jasiorski, Marcin Winnicki, and Daniel Ociński. 2022. "Preparation of Visible-Light Active Oxygen-Rich TiO2 Coatings Using Low Pressure Cold Spraying" Coatings 12, no. 4: 475. https://doi.org/10.3390/coatings12040475
APA StyleGibas, A., Baszczuk, A., Jasiorski, M., Winnicki, M., & Ociński, D. (2022). Preparation of Visible-Light Active Oxygen-Rich TiO2 Coatings Using Low Pressure Cold Spraying. Coatings, 12(4), 475. https://doi.org/10.3390/coatings12040475