Utilization of Active Edible Films (Chitosan, Chitosan Nanoparticle, and CaCl2) for Enhancing the Quality Properties and the Shelf Life of Date Palm Fruits (Barhi Cultivar) during Cold Storage
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation and Characterization of Coating Solutions
2.2. Fruits Storing Protocol
2.3. Measurements
2.3.1. Physical and Quality Properties
Weight Loss (%)
Decay Percentage (%)
Fruit Firmness
Rutab Percentage
Fruit Moisture Percentage
2.3.2. Chemical Properties
Fruit Total Soluble Solids Percentage (TSS)
Overall Sugars (g/100 g “Fresh Weight” FW)
Reducing Sugars
Total Tannins (mg/100 g F.W)
Total Phenols Compounds (g/100 g F.W)
Fruit Pigments
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical and Quality Features
3.1.1. Fruit Weight Failure Ratio
3.1.2. Fruit Decay Percentage
3.1.3. Fruit Firmness
3.1.4. Rutab Fruit (%)
3.1.5. Fruit Moisture Content (%)
3.2. Chemical Characteristics
3.2.1. Total Soluble Solids (TSS)
3.2.2. Total Sugars
3.2.3. Reducing Sugars
3.2.4. Total Tannins
3.2.5. Fruit Total Phenols Content
3.2.6. Fruit Total Chlorophyll Content
3.2.7. Fruit Total Carotenoids Content
3.3. Correlation Matrix among the Different Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chao, C.T.; Krueger, R.R. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Boufersaoui, A.E.-K. The date in all its forms. In Proceedings of the 2nd International Conference for Date Palm (ICDP 2016), Qassim, Saudi Arabia, 10–12 October 2016. [Google Scholar]
- Mitra, S.K. Postharvest Physiology and Storage of Tropical and Subtropical Fruits; CAB international: New York, NY, USA, 1997. [Google Scholar]
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int. 2011, 44, 1812–1822. [Google Scholar] [CrossRef]
- Mortazavi, S.; Arzani, K.; Barzegar, M. Analysis of sugars and organic acids contents of date palm (Phoenix dactylifera L.) ‘Barhee’during fruit development. In Proceedings of the IV International Date Palm Conference 882, Abu Dhabi, United Arab Emirates, 15–17 March 2010; pp. 793–801. [Google Scholar]
- Ismail, B.; Haffar, I.; Baalbaki, R.; Mechref, Y.; Henry, J. Physico-chemical characteristics and total quality of five date varieties grown in the United Arab Emirates. Int. J. Food Sci. Technol. 2006, 41, 919–926. [Google Scholar] [CrossRef]
- Lo’ay, A.A.; Elgammal, R.E.; Alhaithloul, H.A.S.; Alghanem, S.M.; Fikry, M.; Abdein, M.A.; Hikal, D.M. Enhance Fruit Ripening Uniformity and Accelerate the Rutab Stage by Using ATP in ‘Zaghloul’ Dates during the Shelf Life. Foods 2021, 10, 2641. [Google Scholar] [CrossRef]
- Petriccione, M.; Mastrobuoni, F.; Pasquariello, M.S.; Zampella, L.; Nobis, E.; Capriolo, G.; Scortichini, M. Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods 2015, 4, 501–523. [Google Scholar] [CrossRef] [Green Version]
- Devlieghere, F.; Vermeulen, A.; Debevere, J. Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 2004, 21, 703–714. [Google Scholar] [CrossRef]
- Jiang, T.; Deng, M.; James, R.; Nair, L.S.; Laurencin, C.T. Micro-and nanofabrication of chitosan structures for regenerative engineering. Acta Biomater. 2014, 10, 1632–1645. [Google Scholar] [CrossRef]
- Zhang, H.; Li, R.; Liu, W. Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review. Int. J. Mol. Sci. 2011, 12, 917–934. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.D.; Moldão-Martins, M. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Sci. Technol. 2013, 52, 80–92. [Google Scholar] [CrossRef]
- Shiri, M.A.; Bakhshi, D.; Ghasemnezhad, M.; Dadi, M.; Papachatzis, A.; Kalorizou, H. Chitosan coating improves the shelf life and postharvest quality of table grape (Vitis vinifera) cultivar Shahroudi. Turk. J. Agric. For. 2013, 37, 148–156. [Google Scholar]
- Abd Elwahab, W.; Abd Elwahab, S.; Kamel, O. Using Chitosan Ethanol, Bergamot Oil, Acetic Acid and Calcium Chloride as Safe Alternatives to Sulfur Dioxide for Control Postharvest Decay, Maintain Quality of Crimson Grape. Master’s Thesis, Faculty of Agriculture, Cairo University, Cairo, Egypt, 2014. [Google Scholar]
- Kamal, H.M.; El-Wahab, S.M.; Farrag, A.H.; Zainhoum, A.A. Improving fruit quality and Storability of Zaghloul Date Palm Fruits By using Safe Pre and Post-harvest Substance. Biol. Chem. Environ. Sci. J. 2014, 10, 2243–2265. [Google Scholar]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010, 120, 193–198. [Google Scholar] [CrossRef]
- Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J.L.; Alonso, M. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 1997, 63, 125–132. [Google Scholar] [CrossRef]
- Domaratzki, R.E.; Ghanem, A. Encapsulation and release of cladribine from chitosan nanoparticles. J. Appl. Polym. Sci. 2013, 128, 2173–2179. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Xing, R.; Hu, X.Y. A green hydrothermal route to copper nanocrystallites. J. Cryst. Growth 2004, 273, 280–284. [Google Scholar] [CrossRef]
- Tang, Z.-X.; Qian, J.-Q.; Shi, L.-E. Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Appl. Biochem. Biotechnol. 2007, 136, 77–96. [Google Scholar] [CrossRef]
- El-Gioushy, S.F.; Abdelkader, M.F.M.; Mahmoud, M.H.; El Ghit, H.M.A.; Fikry, M.; Bahloul, A.M.E.; Morsy, A.R.; Lo’ay, A.A.; Abdelaziz, A.M.R.A.; Alhaithloul, H.A.S.; et al. The Effects of a Gum Arabic-Based Edible Coating on Guava Fruit Characteristics during Storage. Coatings 2022, 12, 90. [Google Scholar] [CrossRef]
- EL-Gioushy, S.F.; Baiea, M.H.M. Impact of gelatin, lemongrass oil and peppermint oil on storability and fruit quality of Samany date palm under cold storage. Bull. Natl. Res. Cent. 2020, 44, 1–13. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1995; Volume 7. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Taira, S.; Ono, M. Reduction of astringency in persimmon caused by adhesion of tannins to cell wall fragments. In Proceedings of the I International Persimmon Symposium 436, Chang Mai City, Thailand, 1 January 1997; pp. 235–242. [Google Scholar]
- Diaz, D.H.; Martin, G.C. Peach seed dormancy in relation to endogenous inhibitors and applied growth substances. Am. Soc. Hort. Sci. J. 1972, 651–654. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201302322820 (accessed on 3 January 2022).
- Edmisten, K.; Wood, C.; Reeves, D.; Tracy, P. Determination of cotton nitrogen status with a hand-held chlorophyll meter in Alabama and Missouri. In Proceedings of the Beltwide Cotton Conferences (USA), Nashville, TN, USA, 6–10 January 1992. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; Oxford and IBH Publishing Co.: New Delhi, India, 1980. [Google Scholar]
- Steel, R.; Torrie, J. Reproduced from Principles and Procedures of Statistics; Printed with the permission of CI Bliss; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1980; pp. 448–449. [Google Scholar]
- Rohani, M.; Zaipun, M.; Norhayati, M. Effect of modified atmosphere on the storage life and quality of Eksotika papaya. J. Trop. Agric. Food Sci. 1997, 25, 103–114. [Google Scholar]
- Saleem, S.A.; Baloch, A.K.; Baloch, M.K.; Baloch, W.A.; Ghaffoor, A. Accelerated ripening of Dhakki dates by artificial means: Ripening by acetic acid and sodium chloride. J. Food Eng. 2005, 70, 61–66. [Google Scholar] [CrossRef]
- Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem. 2011, 124, 620–626. [Google Scholar] [CrossRef]
- Du, J.; Gemma, H.; Iwahori, S. Effects of chitosan coating on the storage of peach, Japanese pear, and kiwifruit. J. Jpn. Soc. Hortic. Sci. 1997, 66, 15–22. [Google Scholar] [CrossRef]
- Mahajan, B.; Dhatt, A. Studies on postharvest calcium chloride application on storage behaviour and quality of Asian pear during cold storage. J. Food Agric. Environ. 2004, 2, 157–159. [Google Scholar]
- Karemera, N.U.; Habimana, S. Effect of pre-harvest calcium chloride on post-harvest behavior of Mango fruits (Mangifera indica L.) cv. Alphonso. Univers. J. Agric. Res. 2014, 2, 119–125. [Google Scholar] [CrossRef]
- Guilbert, S.; Gontard, N.; Gorris, L.G. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT-Food Sci. Technol. 1996, 29, 10–17. [Google Scholar] [CrossRef]
- Al-Redhaiman, K. Modified atmosphere improves storage ability, controls decay, and maintains quality and antioxidant contents of Barhi date fruits. J. Food Agric. Environ. 2004, 2, 25–32. [Google Scholar]
- Tafti, A.G.; Fooladi, M. Changes in physical and chemical characteristics of Mozafati date fruit during development. J. Biol. Sci 2005, 5, 319–322. [Google Scholar]
- Martínez-Romero, D.; Alburquerque, N.; Valverde, J.; Guillén, F.; Castillo, S.; Valero, D.; Serrano, M. Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: A new edible coating. Postharvest. Biol. Technol. 2006, 39, 93–100. [Google Scholar] [CrossRef]
- Marpudi, S.L.; Abirami, L.; Srividya, N. Enhancement of Storage Life and Quality Maintenance of Papaya Fruits Using Aloe Vera Based Antimicrobial Coating; NISCAIR-CSIR: New Delhi, India, 2011; pp. 83–89. [Google Scholar]
- Candir, E.E.; Ozdemir, A.; Soylu, E.M.; Sahinler, N.; Gul, A. Effects of propolis on storage of sweet cherry cultivar Aksehir Napolyon. Asian J. Chem. 2009, 21, 2659–2666. [Google Scholar]
- Abd Elwahab, S.M.; Abd Allatif, A.M.; Farid, M.A.; Soliman, S.M. Effect of safe post-harvest alternatives on quality and storage life of “barhi” date palm. Plant Arch. 2019, 19, 3937–3945. [Google Scholar]
- Monica, R.C.; Cremonini, R. Nanoparticles and higher plants. Caryologia 2009, 62, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Roller, S. Natural Antimicrobials for the Minimal Processing of Foods; Woodhead Publishing: Sawston, UK, 2003. [Google Scholar]
- Han, C.; Zuo, J.; Wang, Q.; Xu, L.; Zhai, B.; Wang, Z.; Dong, H.; Gao, L. Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (Luffa cylindrica) during storage. Sci. Hortic. 2014, 166, 1–8. [Google Scholar] [CrossRef]
- Shi, S.; Wang, W.; Liu, L.; Wu, S.; Wei, Y.; Li, W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J. Food Eng. 2013, 118, 125–131. [Google Scholar] [CrossRef]
Coating Material | Concentration | Symbol |
---|---|---|
Water (control) | - | T1 |
Chitosan | 1 g/L | T2 |
2 g/L | T3 | |
3 g/L | T4 | |
CaCl2 | 1 g/L | T5 |
2 g/L | T6 | |
3 g/L | T7 | |
Chitosan nanoparticle | 1 cm3/L | T8 |
2 cm3/L | T9 | |
3 cm3/L | T10 |
Properties | Weight Loss | TSS | Total Sugars | Reducing Sugars | No-Reducing Sugars | Rutab | Decay | Firmness | Total Tannins | Moisture | Phenols | Total Chlorophyll f.w. | Totoal Carotenoids |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight loss | 1 | ||||||||||||
TSS | 0.970 ** | 1 | |||||||||||
Total sugars | 0.978 ** | 0.958 ** | 1 | ||||||||||
Reducing sugras | 0.983 ** | 0.963 ** | 0.956 ** | 1 | |||||||||
No-reducing sugars | −0.336 ** | −0.328 ** | −0.178 ** | −0.458 ** | 1 | ||||||||
Rutab | 0.874 ** | 0.913 ** | 0.851 ** | 0.859 ** | −0.304 ** | 1 | |||||||
Decay | 0.870 ** | 0.889 ** | 0.864 ** | 0.827 ** | −0.155* | 0.965 ** | 1 | ||||||
Firmness | −0.982 ** | −0.0980 ** | −0.955 ** | −0.985 ** | 0.413 ** | −0.900 ** | −0.868 ** | 1 | |||||
Total Tannins | −0.840 ** | −0.880 ** | −0.811 ** | −0.850 ** | 0.395 ** | −0.912 ** | −0.844 ** | 0.890 ** | 1 | ||||
Moisture | −0.970 ** | −0.960 ** | −0.953 ** | −0.966 ** | 0.355 ** | −0.889 ** | −0.876 ** | 0.969 ** | 0.854 ** | 1 | |||
Phenols | −0.954 ** | −0.963 ** | −0.947 ** | −0.936 ** | 0.273 ** | −0.919 ** | −0.902 ** | 0.960 ** | 0.905 ** | 0.955 ** | 1 | ||
Total chlorophyll | −0.934 ** | −0.921 ** | −0.890 ** | −0.937 ** | 0.446 ** | −0.819 ** | −0.789 ** | 0.951 ** | 0.817 ** | 0.906 ** | 0.885 ** | 1 | |
Total carotenoids | 0.974 ** | 0.976 ** | 0.950 ** | 0.965 ** | −0.359 ** | 0.926 ** | 0.915 ** | −0.979 ** | −0.885 ** | −0.969 ** | −0.973 ** | −0.931 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Gioushy, S.F.; El-Masry, A.M.; Fikry, M.; El-Kholy, M.F.; Shaban, A.E.; Sami, R.; Algarni, E.; Alshehry, G.; Aljumayi, H.; Benajiba, N.; et al. Utilization of Active Edible Films (Chitosan, Chitosan Nanoparticle, and CaCl2) for Enhancing the Quality Properties and the Shelf Life of Date Palm Fruits (Barhi Cultivar) during Cold Storage. Coatings 2022, 12, 255. https://doi.org/10.3390/coatings12020255
El-Gioushy SF, El-Masry AM, Fikry M, El-Kholy MF, Shaban AE, Sami R, Algarni E, Alshehry G, Aljumayi H, Benajiba N, et al. Utilization of Active Edible Films (Chitosan, Chitosan Nanoparticle, and CaCl2) for Enhancing the Quality Properties and the Shelf Life of Date Palm Fruits (Barhi Cultivar) during Cold Storage. Coatings. 2022; 12(2):255. https://doi.org/10.3390/coatings12020255
Chicago/Turabian StyleEl-Gioushy, Sherif Fathy, Ahmed M. El-Masry, Mohammad Fikry, Mohamed F. El-Kholy, Ayman E. Shaban, Rokayya Sami, Eman Algarni, Garsa Alshehry, Huda Aljumayi, Nada Benajiba, and et al. 2022. "Utilization of Active Edible Films (Chitosan, Chitosan Nanoparticle, and CaCl2) for Enhancing the Quality Properties and the Shelf Life of Date Palm Fruits (Barhi Cultivar) during Cold Storage" Coatings 12, no. 2: 255. https://doi.org/10.3390/coatings12020255
APA StyleEl-Gioushy, S. F., El-Masry, A. M., Fikry, M., El-Kholy, M. F., Shaban, A. E., Sami, R., Algarni, E., Alshehry, G., Aljumayi, H., Benajiba, N., Al-Mushhin, A. A. M., Algheshairy, R. M., & El-Badawy, H. E. (2022). Utilization of Active Edible Films (Chitosan, Chitosan Nanoparticle, and CaCl2) for Enhancing the Quality Properties and the Shelf Life of Date Palm Fruits (Barhi Cultivar) during Cold Storage. Coatings, 12(2), 255. https://doi.org/10.3390/coatings12020255